Effect of the Extract of Ulmus davidiana Root on the Activity of Enzymes Related to the Removal of Reactive Oxygens in B6C3F1 Mouse Kidney

유근피 추출물이 B6C3F1 마우스 신장에서 반응성 산소종의 발생과 제거에 미치는 영향

  • Hong, Jong-Yun (Department of Food Science and Technology, Chung-Ang University) ;
  • Song, Hyuk-Hwan (Department of Food Science and Technology, Chung-Ang University) ;
  • Lee, Chan (Department of Food Science and Technology, Chung-Ang University)
  • 홍종연 (중앙대학교 식품공학과) ;
  • 송혁환 (중앙대학교 식품공학과) ;
  • 이찬 (중앙대학교 식품공학과)
  • Published : 2006.08.01

Abstract

The effect of the extract of Ulmus davidiana root on the activity of enzymes related to the removal of reactive oxygen species was investigated in the B6C3F1 mouse kidney. B6C3F1 mice were divided into five groups and fed for 20 weeks. Reduced xanthine of oxidase activity was observed in groups 4 (group fed with U. davidiana extract after N,N-diethylnitrosamine (DEN) treatment and 5 (group fed with U. davidiana extract from the beginning of DEN treatment) compared to group 2 (group treated with DEN). The level of Mn-superoxidase dismutase tended to increase in the groups after DEN treatment. In group 5, the catalase activity increased and the other groups exhibited an unchanged or slightly decreased level of enzyme. Similar effects were found far glutathione peroxidase. A lower degree of TBARS (thiobarbituric acid reactive substance) formation was estimated in groups 4 and 5, compared to that in DEN treated group 2.

유근피 추출물을 20주간 장기 복용한 B6C3F1 마우스의 신장에서 노화 및 생체 독성의 중요한 지표로 알려진 반응성 산소종 발생 및 제거에 관여하는 효소들의 활성 현화를 관찰하였다. 실험군을 1군(대조군), 2군(암유발군-DEN을 주사하여 암유발), 3군(유근피 복용군), 4군(유근피 암치료군-DEN을 주사한 후 유근피복용), 5군(유근피 암예방군-유근피를 먹이면서 DEN 주사)등 5개군으로 나누었다. 암을 유발시킨 군에 유근피 추출물을 투여시 4군 및 5군에서 암유발군에 비해 유의적(p<0.01)으로 감소된 xanthine oxidase 효소활성을 확인하였다. Cu,Zn-SOD의 활성도는 정상군과 처리군에서 큰 차이는 없으나 Mn-SOD의 활성도는 정상군보다 암유발군에서 유의적으로 증가하는 경향을 보였다. 암유발군(2군)과 유근피 암치료군(4군)은 대조군 보다 catalase 효소이 낮았으며, 유근피 암예방군(5군)에서는 암유발군(2군)보다 catalase 활성도가 높은 것으로 나타났다. 암유발군(2군)에서는 glutathione peroxidase의 활성이 감소하는 것으로 나타났으며, 발암물질 처리와 동시에 유근피 추출물을 처리한 유근피 암예방군(5군)에서는 기타 실험군에 비해 효소활성이 매우 증가하는 것으로 (p<0.01) 나타났다. 대조군(1군)에 비해 암유발군(2군)에서 지질의 과산화도는 매우 증가하는 것으로 나타났으며, 유근피 복용군(3군)에서도 유의적으로 증가(p<0.05)하는 경향을 나타내었다. 그러나 암발생 후 유근피 추출물 식이군인 유근피 암치료군(4군)과 암발생과 동시에 유근피 추출물을 식이한 유근피 암예방군(5군)의 경우 암유발군(2군)보다 지질의 산화도가 낮은 것으로 나타났다.

Keywords

References

  1. Son SH, Park JH, Zee OP. Catechin glycoside from Ulmus davidiana. Arch. Pharm. 21: 219-222 (1989)
  2. Hong ND, Rho YS, Kim NJ, Kim JS. A study on efficacy of Ulmi cortex. Korean J. Pharmacogn. 21: 217-222 (1990)
  3. Lee MK, Sung SH, Lee HS, Cho JH, Kim YC. Lignan and neolignan glycosides from Ulmus davidiana var. japonica. Arch. Pharm. Res. 24: 198-201 (2001) https://doi.org/10.1007/BF02978256
  4. Han KJ, Lee KS, Kong KH, Cho SH. Separation and purification of substance having matrix metalloproteinase-9 inhibition effect in Ulmus davidiana Plancn. var. japonica Nakai. Anal. Sci. Technol. 16: 179-184 (2003)
  5. Kim JP, Kim WG, Koshino H, Jung J, Yoo ID. Sesquiterpene o-naphthoquinones from the root bark of Ulmus davidiana. Phytochemistry 43: 425-430 (1996b) https://doi.org/10.1016/0031-9422(96)00279-8
  6. Lee MK, Kim YC. Five novel neuroprotective triterpene esters of Ulmus davidiana var.japonica. J. Nat. Prod. 64: 328-331 (2001) https://doi.org/10.1021/np0004799
  7. Jun CD, Pae HO, Kim YC, Jeong SJ, Yoo JC, Lee EJ, Choi BM, Chae SW, Park RK, Chung HT. Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages. J. Ethnopharmacol. 62: 129-135 (1998) https://doi.org/10.1016/S0378-8741(98)00063-4
  8. Son YO, Lee KY, Choi KC, Chung Y, Kim JG, Jeon YM, Jang YS, Lee JC. Inhibitory effects of glycoprotein-120(G-120) from Ulmus davidiana Nakai on cell growth and activation of matrix metalloproteinases. Mol. Cells 18: 163-170 (2004)
  9. Lee SJ, Heo KS, Oh PS, Lim K, Lim KT. Glycoprotein isolated from Ulmus davidiana Nakai inhibits TPA-induced apoptosis through nuclear factor-kappa B in NIH/3T3 cells. Toxicol. Lett. 146: 159-174 (2004) https://doi.org/10.1016/j.toxlet.2003.10.005
  10. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 3rd ed. Oxford University Press, Oxford, UK. pp. 246-350 (1999)
  11. Mates JM, Perez-Gomez C, Nunez de, CI. Antioxidant enzymes and human diseases. Clin. Biochem. 32: 595-603 (1999) https://doi.org/10.1016/S0009-9120(99)00075-2
  12. Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. NY. Acad. Sci. 899: 136-147 (2000)
  13. Simon RH, Scoggin CH, Patterson D. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J. Biol. Chem. 256: 7181-7186 (1981)
  14. Moody CS, Hassan HM. Mutagenicity of oxygen free radicals. Proc. Natl. Acad. Sci. USA 79: 2855-2859 (1982)
  15. Shingu M, Oribe M, Todoroki T, Tatsukawa K, Tomo-oka K, Yasuda M, Nobunaga M. Serum factors from patients with systemic lupus erythematosus enhancing superoxide generation by normal neutrophils. J. Invest. Dermatol. 81: 212-215 (1983) https://doi.org/10.1111/1523-1747.ep12517989
  16. Fridovich I. Quantitative aspects of production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem. 245: 4053-4057 (1970)
  17. Goldstein IM, Cerqueira M, Lind S, Kaplan HB. Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface. J. Clin. Inverst. 59: 249-254 (1977) https://doi.org/10.1172/JCI108635
  18. Fisher DB, Kaufman, S. Tetrahydrobiopterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxylase. J. Biol. Chem. 248: 4300-4305 (1973)
  19. Kolaja KL, Xu Y, Walborg EF Jr., Stevenson DE, Klaunig JE. Vitamin E modulation of dieldrin-induced hepatic focal lesion growth in mice. J. Toxicol. Environ. Health A. 53: 479-492 (1998) https://doi.org/10.1080/009841098159196
  20. McCord JM, Fridovich I. Superoxide dismutase: Enzymatic function for erythrocuprein (hematocuprein), J. Biol. Chem. 244: 6049-6055 (1969)
  21. Salin ML, Day ED Jr., Crapo JD. Isolation and characterization of manganese-containing superoxide dismutase from rat liver. Arch. Biochem. Biophys. 187: 223-228 (1978) https://doi.org/10.1016/0003-9861(78)90027-9
  22. Aebi H. Catalase pp. 673-684. In: Methods of Enzymatic Analysis, 2nd. Vol. 2, Bergmeyer HU (ed.), Academic Press, New York, USA (1974)
  23. Flohe L, Gunzler WA. Assays of glutathione peroxidase. Method Enzymol. 105: 114-121 (1984) https://doi.org/10.1016/S0076-6879(84)05015-1
  24. Fried R, Fried LW. Xanthine oxidase (xanthine dehydrogenase). pp. 644-649. In: Methods of Enzymatic Analysis, 2nd Vol. 2, Bergmeyer HU (ed.), Academic Press, New York, USA (1974)
  25. Ohkawa H, Chishi N, Yagi K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem, 95: 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  26. Kaneko N, Yasui H, Takada J, Suzuki K, Sakurai H. Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice. J. Inorganic Biochem. 98: 2022-2031(2004) https://doi.org/10.1016/j.jinorgbio.2004.09.008
  27. Kuppusamy P, Zweier JL. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J. Biol. Chem. 264: 9880-9884 (1989)
  28. Nulton-Persson AC, Szweda LI. Modulation of mitochondrial function by hydrogen peroxide. J. Biol Chem. 276: 23357-23361 (2001) https://doi.org/10.1074/jbc.M100320200
  29. Terada LS, Guidot DM, Leff JA, Willingham IR, Hanley ME, Piermattei D, Repine JE. Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc. Natl. Acad. Sci. USA 89: 3362-3366 (1992)
  30. Taysi S, Polat F, Gul M, Sari RA, Bakan E. Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol. Int. 21: 200-204 (2002) https://doi.org/10.1007/s00296-001-0163-x
  31. Nagini S, Manoharan S, Ramachandran CR. Lipid peroxidation and antioxidants in oral squamous cell carcinoma. Clin. Chim. Acta. 273: 95-98 (1998) https://doi.org/10.1016/S0009-8981(98)00023-0
  32. Casaril M, Corso F, Bassi A. Capra F, Gabrielli GB, Stanzial AM, Nicoli N, Corrocher R. Decreased activity of scavenger enzymes in human hepatocellular carcinoma, but not in liver metastases. Int. J. Clin. Lab. Res. 24: 94-97 (1994) https://doi.org/10.1007/BF02593907
  33. Borrello S, De Leo ME, Galeotti T. Defective gene expression of Mn-SOD in cancer cells. Mol. Aspects Med. 14: 253-258 (1993) https://doi.org/10.1016/0098-2997(93)90012-3
  34. Oberley TD, Oberley LW. Antioxidant enzyme levels in cancer. Histol Histopathol. 12: 525-535 (1997)
  35. De S, Chakraborty J, Chakraborty RN, Das S. Chemopreventive activity of quercetin during carcinogenesis in cervix uteri in mice. Phytother. Res. 14: 347-351 (2000) https://doi.org/10.1002/1099-1573(200008)14:5<347::AID-PTR613>3.0.CO;2-7
  36. Caballero F, Gerez E, Oliveri L. Falcoff N, Batile A, Vazquez E. On the promoting action of tamoxifen in a model of hepatocarcinogenesis induced by p-dimethylaminoazobenzene in CF1 mice. Int. J. Biochem. Cell. Biol. 33: 681-690 (2001) https://doi.org/10.1016/S1357-2725(01)00056-5
  37. Jayashree G, Kurup Muraleedhara G, Sudaralal S. Antioxidant activity of Centella asiatica on lymphoma-bearing mice. Fitoterapia 74: 431-434 (2003) https://doi.org/10.1016/S0367-326X(03)00121-7
  38. Pereira B, Bechara EJ, Mendonca JR, Curi R. Superoxide dismutase, catalase and gluthione peroxidase activities in the lymphoid organs and skeletal muscles of rats treated with dexamethasone. Cell Biochem. Funct. 17: 15-19(1999) https://doi.org/10.1002/(SICI)1099-0844(199903)17:1<15::AID-CBF804>3.0.CO;2-T
  39. Lu YP, Lou YR, Yen P, Newmark HL, Mirochnitchenko OC, Inouye M. Enhanced skin carcinogenesis in transgenic mice with high expression of glutathione peroxidase or both glutathion peroxidase and superoxide dismutase. Cancer Res. 57: 1468-1474 (1997)
  40. Mitchell JD, Gatt JA, Phillips TM, Houghton E, Rostron G, Wignall C. Cu/Zn superoxide dismutase free radicals and motoneuron disease. Lancet 342: 1051-1052 (1993) https://doi.org/10.1016/0140-6736(93)92906-A
  41. Batko J, Warchol T, Karon H. The activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in erythrocytes of rats with experimental neoplastic disease. Acta Biochim. Pol. 43: 403-405 (1996)
  42. Esterbauer H. pp. 101-105. In: Free Radicals, Lipid Peroxidation and Cancer. McBrien DCH, Slater TF (eds). Academic press, New York, USA (1982)
  43. Kim JP, Kim WG, Koshino H, Jung J, Yoo ID. Sesquiterpene o-naphthoquinones from the root bark of Ulmus davidiana. Phytochemistry 43: 425-430 (1996b) https://doi.org/10.1016/0031-9422(96)00279-8
  44. Sarkar A, Bishayee A, Chatterjee M. Beta-carotene prevents lipid peroxidation and red blood cell membrane protein damage in experimental hepatocarcinogenesis. Cancer Biochem. Biophys. 15: 111-125 (1995)
  45. Wenger FA, Kilian M, Mautsch I, Jacobi CA, Steiert A, Peter FJ, Guski H, Schimke I, Muller JM. Influence of octreotide on liver metastasis and hepatic lipid peroxidation in BOP-induced pancreatic cancer in Syrian hamsters. Pancreas 23: 266-272 (2001) https://doi.org/10.1097/00006676-200110000-00007
  46. Mittal A, Elmets CA, Katiyar SK. Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis 24: 1379-1388 (2003) https://doi.org/10.1093/carcin/bgg095