분무 및 동결 건조 타주 분말의 저장 중 품질변화
정진웅, 박기제*, 김병호, 김동수
한국식품연구원

Changes in Quality of Spray-dried and Freeze-dried Takju Powder during Storage
Jin-Woong Jeong, Kee-Jai Park*, Myung-Ho Kim, and Dong-Soo Kim
Korea Food Research Institute

Abstract. Spray-dried (SD) and freeze-dried (FD) takju powders were stored at 5, 15 and 25°C, and various quality characteristics such as moisture, amino nitrogen, color value, total viable cell count, total sugar, reducing sugar, organic acid, and flavor compounds were measured for 50 days at 10-day intervals. After 50 days of storage, the moisture content was increased from an initial 6.64% to 7.24-7.38% in the SD powder, and from an initial 4.86 to 5.43-5.61% in the FD powder. pH, total acid content and total viable cell counts were slightly increased. Organic acid content was decreased in the SD powder from an initial 3,949.9 mg% to 805.9-922.3 mg%, and in the FD powder from an initial 5,171.5 mg% to 3,645.5-4,110.2 mg%. Amino nitrogen content was increased in the SD powder from an initial 1.2% to 1.9-2.2%, and in the FD powder from an initial 1.9% to 2.2-2.5%. Total sugar and reducing sugar contents were increased in the SD powder from an initial 17.2% and 4.0% to 25.9-27.3% and 5.8-6.9%, and in the FD powder from an initial 19.1% and 5.2% to 29.2-30.2% and 8.3-8.8%, respectively. With increasing storage time, L and b values in the SD powder increased slowly, while L value in the FD powder tended to decrease and b value tended to increase. About 20 major volatile flavor components were identified in the SD and FD powders by GC-MS and all such component levels were decreased with increasing storage time.

Key words: takju powder, spray drying, freeze drying, quality, storage

서론

락걸리, 농동 등으로 불리는 타주는 대표적인 우리나라 재래주로서 가장 오랜 역사와 함께 우리의 친숙한 술로 전통주의 계승 발전에 있어 중요한 역할을 하였다(1). 그러나 오와주류
화 및 기호도의 변화, 주류 상의 문제 등으로 급격한 수요의 감소 추세를 보이고 있어 품질의 과학화와 주류의 다양화 등 품질 개선을 위한 노력이 시급하다. 이점에 새로운 식품소재로서의 활
용도를 제고시킬 수 있는 기술개발을 통해 우리 전통주의 계승 발전 및 세계화에 기여할 필요가 있다.

타주는 일반 주류과는 달리 상당량의 단백질과 당양이 함유되 어 있고 생포효과 비타민 B군을 비롯한 레닌, 레닌 등의 필수아미노산 및 glutathione을 함유하며 영양가가 풍부한 뿐만 아니라 생포효과를 함유하여 다른 주류와 향별히된 특성을 가지고 있 다(2-4). 타주에 대한 연구는 주로 학계 연구(5,6), 양조 및 증류
특성(12,9), 미생물학적 안전성 및 저장성(10,11) 등에 대한 내용이 주로 이루어 있고, 스타트 개발 및 고유한 식용 법 제조 등 재
한적으로 활용도 증진과 관련된 연구(12-15)가 있을 뿐이다.

한편, 근년 전통주에서는 자국 산업의 보호와 수입 대체를 위
해 기존 식재료로부터의 유동 물질의 탈색 및 활용도 증진에 집중적인 연구 부자리를 진행하고 있다. 더욱이 화학적 함유물이 가
지는 인체 유해성 논란과 부적절한 사용에 따른 소비자의 불안
은 천연항암소 재배 태양의 필요성을 가속시키고 있으며 기존 소
재로부터의 새로운 전환소재의 개발은 소비자들의 안전성과 편
이성에 대한 요구에 부합하기 때문에 지속적인 활발한 가능성을 제
시하고 있다.

전통적으로 습식제조분한 방주구를 발효시킨 타주를 넣어 발
효시켜 성형하는 품종의 발효주로 타주가 사용되어 왔다(12,14).
또한 타주의 특성의 단백질, 당류, 함유, 단, 인의에서도 친근함과
효모를 함유하여 재배·제조에서 효모의 생육에 필수적인
유익한 환경을 제공할 수 있을 것으로 판단된다. 이러한 특성
에서 타주가 재배·제조의 공급 중재 후에 발생하는 맥거부의
전반 문제를 개선할 수 있는 개량재료로서의 용도개발 가능성을 있
다. 판단되어 진보(16)에서 증이 개선재료로서의 활용 가능성을
확진 바 있다.

따라서 본 연구에서는 분야간조 및 동결건조를 통해 재조한 타주
분말의 저장중 품질 변화의 특성을 확인하여 재배·제조에서의
품이 개선 및 품질 개량재료로서의 활용도 증진 및 실험을 위한
자료를 얻고자 하였다.
재료 및 방법

실험 재료
본 실험을 위해 밀가루(강력분, 대평제분(?), 상능가는 정맥
당, 제일제당(?)?), 소금(마스소금, 홍길염염), 이스트(제니로(?)?), 농
축(당량, 300 S.P., 대용량), 버터(가합버터, 해태유업(?)?)를 사
용하였다. 주로 제조용 효모는 한국식품연구원에 보관 중인
Saccharomyces cerevisiae K01124를 사용하였다. 면발은 제작
후 5일간 동안 냉장에서 취한 후 적당량과 고압 공기증성기에서
121°C, 20분간 증량한 30℃로 냉장하여 사용하였다.

주요 제조
주요 제조용 효모는 YM 배지(Difco Lab., Detroit, MI, USA)
10 mL에 S. cerevisiae K01124 배경수를 첨부하여 30℃에
24시간 전배양한 후 YM 레체ye 100 mL에 이식하여 24시간 배
양하였다. 면발 200 g를 세척한 다음 5일간 동안 냉장에 취한 후
자연 탈수하고 고압 공기증성기에서 121°C, 20분간 증량한 30℃로
냉장하였다. 증가 면발 200 g, 농축 80 g, 병 600 mL 및 S. cer-
viseae K01124 배경수 60 mL을 잘 혼합한 다음 30℃에서
2일간 발효시켜 주로를 제조하였다.

탁주반말 제조 및 저장
증가 면발 1.5 kg를 15L 유리병에 넣고 농축 600 g, 농 4.5L
및 주로 450 mL를 잘 혼합한 다음 30℃에서 4일간 발효한 탁주
를 분리(모델 BE-1164, Bowen Engineering, Inc, Fishers,
IN, USA)로 분리하였다. 피터기는 Feeder 25 rpm(18 L/hr)
내부온도 140-150°C, 압력으로 110℃, 분무압력 2.8 psi, 진공압력
0.5 psi 이었다. 동결건조 분말은 동결건조기(Model T.D 5070 RR,
Illsh Lab Co., Kyunggi-do, Korea)로 동결건조하여 분말화 하였
다. 제조된 탁주 반말은 은박관자(OPP/APE 복합단층필름, 80
µm)에 70 g 단위로 포장하고 5, 15 및 25℃ 저장고에 50일간 저장
하였다면서 품질변화를 점검하였다.

일반성분
저장중 시료의 수분함량은 상업가정조법으로 측정하였다.
미식에 대한 함량은 시료 5 g에 1% 나트륨화소를 첨가한 용액 250 mL
로 회사, 균형을 이루고 이 중 25 mL를 취하여 Formate법으로 구하였다.
pH는 AOAC(1973)에 따라 시료 10 g에 증류수 50 mL을 가하고
pH meter (Model 2000A, Suntex Instruments Co., Ltd., Taipci,
Taiwan)를 이용하여 pH를 측정한 다음, 1% phenolphthalein을 저
시약으로 하여 0.1 N NaOH 용액으로 미처리(pH 8.3)될 때까지
적정하고 적정 소비량에 0.009 를 곱하여 시료 증의 총산
lactic acid로 환산하였다.(10) 환산량은 DNS법으로, 총산은 시료
10 g에 2.5% HCI 200 mL를 넣고 100℃에서 2시간 동안 가수분
해한 다음 10% NaOH로 pH 6.8-7.2로 줄화하고, 화학적 분
후 1 mL를 취하여 정량히 glucose 함량으로 표시하였다. 시료의
흡광도는 UV/VIS 스펙트로포טר모터(Model V-550, Jasco, Tokyo,
Japan)로 550 nm에서 측정하였고, 검증무션은 두부 포도당 용액
으로 구하였다.

석도 및 갈 kep
석도는 석시계(Model UtraScan XE, Hunter Lab., Reston, VA,
USA)로, Hunter scale의 L값(Lightness), a값(redness) 및 b값(yel-
lowness)으로 측정하였으며, 각 조건간의 절도 차이는 석시(color
difference, ∆E)로 분석하였다. 갈 kep은 시료 1.3 g을 취하고 40 mL
의 증류수로 가린 다음 10% trichloroacetic acid 용액 10 mL를 첨가
하여 싸운에서 2시간 동안 방분한 후 여과하여 UV/VIS 스펙트로-
포터모터 (Model V-550, Jasco, Tokyo, Japan)로 420 nm에서 흡광도
을 측정하였다.

미생물군
시료에 10%의 병균이 0.85(w/v) NaCl을 가한 후 스토머커
(Model Stomacher 400 Circulator, Seward, England)로 굽과
(260 rpm, 2 min)한 다음, 단계 회석하여 화학시료에 Plate Count
Agar(Difco Lab., Detroit, MI, USA)를 푸어 플레이트 하고 35 ±
1℃ 오도계에서 48시간 동안 배양한 후 나타난 colony를 계산
하여 측정하였다.

유기산
Lee(19)의 방법을 준용하여 시료 20 g을 취하여 4℃, 10,
000 rpm에서 15분간 원심분리하였다. 상상에 2 mL을 취하여
0.008 M H2SO4 용액 10 mL에 넣고 혼합한 다음 Sep-pak C8
cartridge(Waters Corp., Milford, MA, USA)를 통과시켜 단백질, 식
소, 적당 등의 고분자 물질을 제거하고 0.45 µm membrane filter
로 여과하였다. 결과액 20 mL을 Table 1과 같은 조건에서 HPLC
에 주입하여 분석하고, 유기산의 검증용액으로부터 정량하였다.

Table 1. Operation conditions of HPLC for determination of organic acids

<table>
<thead>
<tr>
<th>Column</th>
<th>Aminex HPX-87H, 300 mm × 7.8 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oven temp.</td>
<td>35℃</td>
</tr>
<tr>
<td>Detector</td>
<td>Jasco UV-9755, 210 nm</td>
</tr>
<tr>
<td>Flow rate</td>
<td>0.6 mL/min</td>
</tr>
<tr>
<td>Injection volume</td>
<td>20 µL</td>
</tr>
<tr>
<td>Mobile phase</td>
<td>Sulforic acid, 0.008 M</td>
</tr>
</tbody>
</table>

Table 2. Operation conditions of GC and GC-MS for analyses of volatile compounds

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Hewlett-Packard 5890</th>
<th>Shimadzu GCMS-WP5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>J&W GC column</td>
<td></td>
</tr>
<tr>
<td>Length (m)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>LD (mm)</td>
<td>0.252</td>
<td></td>
</tr>
<tr>
<td>Film thickness (µm)</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Temperature (℃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Injector</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>• Detector</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>Oven program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Initial temp. (℃)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>• Initial time (min)</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>• Rate (℃/min)</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>• Final temp. (℃)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>• Final time (min)</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Gas flow rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Carrier gas</td>
<td>N2, 50 kPa</td>
<td>H2</td>
</tr>
<tr>
<td>• Hydrogen</td>
<td>50 kPa</td>
<td>50 kPa</td>
</tr>
<tr>
<td>• Air</td>
<td>50 kPa</td>
<td>50 kPa</td>
</tr>
<tr>
<td>• Split ratio</td>
<td>1:67</td>
<td>1:100</td>
</tr>
</tbody>
</table>

Library | Wiley138 library
전체 및 동결 건조 타주 분말의 저장 중 품질변화 봉부 및 동결 건조 타주 분말의 저장 중 품질변화

Table 3. Some general properties of brewed takju and dried powder

<table>
<thead>
<tr>
<th>General properties</th>
<th>Brewed takju</th>
<th>Takju powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>84.50</td>
<td>6.64</td>
</tr>
<tr>
<td>pH</td>
<td>3.44</td>
<td>4.88</td>
</tr>
<tr>
<td>Total acidity (%)</td>
<td>1.3</td>
<td>5.7</td>
</tr>
<tr>
<td>Total sugar (%)</td>
<td>11.6</td>
<td>17.2</td>
</tr>
<tr>
<td>Reducing sugar (%)</td>
<td>1.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Amino nitrogen (%)</td>
<td>66.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Viable cells (CFU/g)</td>
<td>1.1×10^4</td>
<td>1.2×10^7</td>
</tr>
</tbody>
</table>

1) All results are presented as mean of triplicate.

Fig. 1. Change of moisture content of takju powder during storage at different temperatures.

Fig. 2. Change of pH of takju powder during storage at different temperatures.

Fig. 3. Change of total acid content of takju powder during storage at different temperatures.

결과 및 고찰

탁주분말의 초기 품질 특성

통계적 주제는 제조·저장용 품질가장재 개발을 둔 한 주 제조조건은 전통(16)과 같이 주 전문업 원료로 염발을 사용하고, 담담방법은 주로 받는 2단 담담법을 사용하였다. 4일 발효한 탕주를 분무의 및 동결건조하여 제조한 탕주의 일반적인 품질특성은 Table 3에서와 같이 건조방법에 따라 차이가 클음을 알 수 있었다. 슬럼분말은 분무조의 탕주분말 6.64%, 동결건조 탕주분말 4.86%, 건조 84.50%에서 각각 77.86%와 79.64%가 감소하였다. 건조방법에 따른 수분함량의 차이는 계피 추출물과 마늘 착즙액의 건조방법에 따른 품질변화를 보고한 Kim과 Kim(21) 및 Shin(22)의 연구결과와 일치하는 것이었다. pH는 분무건조 탕주분말이 pH 3.52, 동결건조 탕주분말이 pH 4.88로 동결건조 탕주분말은 건조한 것에 비해 1.44 정도 상승하였고, 총산은 분무건조 탕주분말 5.7, 동결건조 탕주분말이 5.8로 건조한 것의 97.1% 및 98.8% 수준이었다. 총당은 분무건조 탕주분말과 동결건조 탕주분말 각각 17.2%와 19.1%로 건조한 말랑이 11.6%보다 비해 각각 32.8%와 36.5% 수준이었다. 휘황당은 분무건조 탕주분말과 동결 건조 탕주분말이 4.0%와 5.2%로 건조한 말랑이 1.2%보다 각각 73.8%와 95.9% 수준이었다. 건조방법에 따른 pH, 색도 및 단 맛의 변화를 염밀히 통식으로 설명한 기존의 연구결과(21,22)와 일치하는 결과였다. 건조조건, 가장 큰 영향 변화를 보인 것은 아미노산 질소합의 탕주분말은 4.0%, 동결건조 탕주분말은 6.4%였다. 건조방법에 따른 아미노산 질소합량의 변화 동일, 동결건조 탕주분말은 6 log scale, 분무건조 탕주분말은 3 log scale 정도가 감소하는 것으로 나타났다.
Table 4. Changes in organic acid contents of takju powder during storage (Unit: mg%)

<table>
<thead>
<tr>
<th>Powder Type</th>
<th>Storage Time (days)</th>
<th>Storage Temp. (℃)</th>
<th>Citric acid</th>
<th>Tartaric acid</th>
<th>Malic acid</th>
<th>Succinic acid</th>
<th>Lactic acid</th>
<th>Acetic acid</th>
<th>Propionic acid</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takju powder</td>
<td></td>
<td></td>
<td>360.4</td>
<td>361.1</td>
<td>301.4</td>
<td>263.5</td>
<td>2,316.3</td>
<td>160.4</td>
<td>186.8</td>
<td>3,949.9</td>
</tr>
<tr>
<td>Spray-dried</td>
<td>0</td>
<td>-</td>
<td>180.5</td>
<td>212.8</td>
<td>267.7</td>
<td>241.7</td>
<td>1,076.6</td>
<td>126.0</td>
<td>170.2</td>
<td>2,275.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
<td>249.6</td>
<td>294.9</td>
<td>289.6</td>
<td>188.6</td>
<td>1,469.1</td>
<td>116.3</td>
<td>160.7</td>
<td>2,768.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>223.9</td>
<td>272.2</td>
<td>269.2</td>
<td>173.5</td>
<td>1,345.3</td>
<td>156.3</td>
<td>207.6</td>
<td>2,648.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>183.5</td>
<td>198.1</td>
<td>224.9</td>
<td>178.0</td>
<td>867.1</td>
<td>125.2</td>
<td>156.2</td>
<td>1,933.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5</td>
<td>193.6</td>
<td>175.6</td>
<td>258.2</td>
<td>161.8</td>
<td>1,200.1</td>
<td>119.3</td>
<td>178.3</td>
<td>2,286.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>135.2</td>
<td>123.8</td>
<td>260.9</td>
<td>101.4</td>
<td>1,023.9</td>
<td>129.0</td>
<td>149.4</td>
<td>1,923.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>106.0</td>
<td>186.8</td>
<td>234.9</td>
<td>32.4</td>
<td>809.0</td>
<td>116.3</td>
<td>105.6</td>
<td>1,582.9</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5</td>
<td>154.4</td>
<td>187.1</td>
<td>245.8</td>
<td>33.6</td>
<td>764.6</td>
<td>121.1</td>
<td>92.3</td>
<td>1,598.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>125.3</td>
<td>108.8</td>
<td>238.9</td>
<td>32.7</td>
<td>829.0</td>
<td>87.3</td>
<td>99.3</td>
<td>1,584.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>45.4</td>
<td>50.4</td>
<td>219.6</td>
<td>29.7</td>
<td>663.2</td>
<td>12.6</td>
<td>82.1</td>
<td>1,103.0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5</td>
<td>23.6</td>
<td>55.8</td>
<td>247.6</td>
<td>27.8</td>
<td>743.7</td>
<td>12.8</td>
<td>80.4</td>
<td>1,191.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>19.4</td>
<td>56.0</td>
<td>247.6</td>
<td>30.8</td>
<td>658.8</td>
<td>11.2</td>
<td>85.4</td>
<td>1,089.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>27.8</td>
<td>47.4</td>
<td>222.4</td>
<td>49.1</td>
<td>500.9</td>
<td>10.4</td>
<td>36.2</td>
<td>894.2</td>
</tr>
<tr>
<td>Freeze-dried</td>
<td>50</td>
<td>5</td>
<td>345.4</td>
<td>387.5</td>
<td>561.4</td>
<td>275.3</td>
<td>2,752.7</td>
<td>224.8</td>
<td>624.4</td>
<td>5,171.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>337.4</td>
<td>376.4</td>
<td>542.5</td>
<td>243.3</td>
<td>2,548.7</td>
<td>208.3</td>
<td>616.3</td>
<td>4,872.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>357.9</td>
<td>374.8</td>
<td>532.0</td>
<td>289.3</td>
<td>2,648.5</td>
<td>217.0</td>
<td>604.5</td>
<td>5,024.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5</td>
<td>352.8</td>
<td>403.0</td>
<td>559.3</td>
<td>242.3</td>
<td>2,408.0</td>
<td>190.7</td>
<td>598.3</td>
<td>4,754.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>347.4</td>
<td>352.5</td>
<td>512.2</td>
<td>224.4</td>
<td>2,533.0</td>
<td>178.4</td>
<td>555.7</td>
<td>4,703.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>316.1</td>
<td>346.1</td>
<td>537.5</td>
<td>204.8</td>
<td>2,376.1</td>
<td>184.0</td>
<td>545.5</td>
<td>4,510.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5</td>
<td>324.3</td>
<td>376.1</td>
<td>553.0</td>
<td>267.7</td>
<td>2,457.8</td>
<td>146.5</td>
<td>582.3</td>
<td>4,707.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>309.3</td>
<td>342.3</td>
<td>523.3</td>
<td>243.9</td>
<td>2,434.1</td>
<td>135.7</td>
<td>523.1</td>
<td>4,511.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>312.5</td>
<td>360.5</td>
<td>456.4</td>
<td>202.1</td>
<td>2,284.9</td>
<td>174.9</td>
<td>519.3</td>
<td>4,310.6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5</td>
<td>299.7</td>
<td>357.0</td>
<td>552.2</td>
<td>256.0</td>
<td>2,365.8</td>
<td>124.7</td>
<td>527.7</td>
<td>4,483.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>286.5</td>
<td>275.2</td>
<td>523.3</td>
<td>214.0</td>
<td>2,412.7</td>
<td>103.3</td>
<td>513.3</td>
<td>4,328.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>287.6</td>
<td>284.3</td>
<td>419.1</td>
<td>228.9</td>
<td>2,176.0</td>
<td>158.0</td>
<td>518.2</td>
<td>4,072.1</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>5</td>
<td>302.4</td>
<td>320.3</td>
<td>519.1</td>
<td>218.6</td>
<td>2,287.8</td>
<td>107.7</td>
<td>520.1</td>
<td>4,276.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>319.6</td>
<td>244.9</td>
<td>510.1</td>
<td>189.7</td>
<td>2,253.7</td>
<td>96.2</td>
<td>496.0</td>
<td>4,110.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>245.5</td>
<td>283.2</td>
<td>386.2</td>
<td>225.9</td>
<td>2,076.4</td>
<td>123.3</td>
<td>423.3</td>
<td>3,763.8</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>5</td>
<td>313.2</td>
<td>287.3</td>
<td>486.8</td>
<td>222.5</td>
<td>2,053.2</td>
<td>87.3</td>
<td>483.9</td>
<td>3,646.0</td>
</tr>
</tbody>
</table>

1) All results are presented as mean of triplicate.
Fig. 4. Change of total sugar content of takju powder during storage at different temperatures.

후 저장 50일까지 5.8% 수준을 유지하였다. 약물에 함유된 유기산은 citric acid, tartaric acid, malic acid, succinic acid, lactic acid, acetic acid, propionic acid 등이 있으며, lactic acid가 주된 유기산으로 존재한다(23). 본 실험의 약물분말에서도 lactic acid의 함량이 가장 높았다. 분무건조 약물분말의 유기산 초기 함량은 3,949.9 mg/mL였으며 저장 중 지속적으로 감소하여 저장 50일에는 초기 함량의 20.23% 수준인 805.9-922.3 mg/mL였다. 유기산의 감소폭은 acetic acid, citric acid 등이 상대적으로 컸으며, lactic acid와 malic acid 등이 상대적으로 완만한 감소로 나타났다. 동결건조 약물분말의 초기 유기산 함량은 5,171.5 mg/mL로 분무건조 약물분말보다 높았으며 저장 50일에는 초기 함량의 72.79% 수준인 3,646.0-4,110.2 mg/mL였다. 모든 유기산이 저장기간의 경과에 따라 전반적으로 감소하였으며 acetic acid와 tartaric acid 함량의 감소가 가장 작은 것으로 나타났다(Table 4). 그러나 저장중 유기산 함량의 감소와 이에 따른 pH 변화의 원인에 대해서는 향후 추가적인 연구가 필요하다고 생각된다.

총당과 탄화당 함량의 변화
저장 중 총당과 탄화당 함량의 변화는 Fig. 4 및 Fig. 5와 같다. 총당 함량은 건조방법에 따른 차이가 크지 않은 것으로 나타나 분무건조 약물분말은 초기 17.2%에서 저장기간의 경과에 따라 지속적인 증가를 나타내어 저장 50일에는 5°C 저장 약물분말은 26.2%, 15°C 저장 약물분말은 25.9%, 25°C 저장 약물분말은 27.3%로 초기 함량에 비해 대략 8.7-10.6%의 증가를 나타내었다. 동결건조 약물분말도 유사한 경향을 나타내어 초기 함량은 각각 19.1%에서 저장 50일에는 5°C 저장 약물분말은 29.2%, 15°C 저장 약물분말은 30.9%, 25°C 저장 약물분말은 32.0%로 초기 함량에서 비해 대략 10.0-10.9%의 증가를 나타내어 건조방법에 따른 저장중 변화량의 차이는 크지 않은 것으로 나타났다. 환원당 함량의 변화도 총당 함량의 변화와 유사한 경향을 나타내어 저장기간의 경과에 따라 지속적인 증가를 보였다(Fig. 5). 분무건조 약물분말은 초기 4.0%에서 저장 40일에는 5°C 저장에서는 5.5%로, 15°C와 25°C에서는 5.8%와 6.3%로 증가하였으며 저장 50일에는 5°C 저장에서는 5.8%, 15°C 저장에서는 6.1%, 25°C 저장에서는 6.9%로 저장 중간도 낮은 수증을 증가량이 큰 것으로 나타났다. 동결건조 약물분말의 저장에서도 지속적인 증가가 나타나 5°C 저장에서는 초기 5.2%에서 저장 50일에는 8.5%, 15°C 저장에서는 8.3%, 25°C 저장에서는 8.8%로 전반적인 변화량은 5°C 저장이 3.3%, 15°C 저장이 3.1%, 25°C 저장이 3.6%였다. 이는 분무건조 약물분말의 변화량 1.8-2.9%에 비해 상대적으로 높은 수준으로 나타났으며, 동결건조의 변량률을 고려할 때에는 분무건조와 동결 건조에 비해 저장 안정성이 높은 것으로 판단되었다.

아미노산 실험 현상의 변화
아미노산 실험은 약물 발효기간의 경과에 따라 일반적으로 증가하며, 이는 주원료인 찹쌀과 누룩 중에 함유된 단백질이 녹육이나 발효과정 중 미생물이 생성하는 acid protease와 peptidase 등에 의해 작용으로 생성되어 약물의 질감탄력 영향을 준다(21). Fig. 6에서와 같이 분무건조 약물분말의 아미노산 함량은 초기 1.2%에서 저장 30일에는 1.9% 수준이었다. 저장 40일과 50일에는 저장 중간도에 따라 다소간의 차이가 나타나 5°C 저장에서는 1.9% 및 2.0%, 15°C 저장에서는 2.1%, 25°C 저장에서는 1.9% 및 2.2%를 나타내어 저장 중간도가 높은 수준으로 나타났다. 동결건조 약물분말도 저장기간의 경과에 따라 지속적으로 증가하여 초기 1.9%에서 저장 50일에는 5°C 저장에서는 2.2%, 15°C 및 25°C 저장에서는 2.5%였다. 그러나 전반적으로 동결건조 약물분말은 분무건조 약물분말에 비해 증가폭이 작아 아미노산 함량 변화 측면에서는 저장 안정성이
Table 5. Changes in color value of takju powder during storage

<table>
<thead>
<tr>
<th>Takju powder</th>
<th>Color value<sup>1</sup></th>
<th>Storage temp. (°C)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Storage time (days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spray-dried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>5</td>
<td>84.81</td>
<td>87.45</td>
<td>87.27</td>
<td>87.41</td>
<td>87.29</td>
<td>87.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>84.81</td>
<td>88.28</td>
<td>87.48</td>
<td>87.60</td>
<td>87.42</td>
<td>87.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>84.81</td>
<td>86.95</td>
<td>86.65</td>
<td>87.27</td>
<td>87.34</td>
<td>87.42</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>5</td>
<td>-</td>
<td>1.09</td>
<td>-0.07</td>
<td>0.04</td>
<td>0.13</td>
<td>0.02</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-</td>
<td>1.09</td>
<td>-0.11</td>
<td>0.04</td>
<td>0.20</td>
<td>0.12</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-</td>
<td>1.09</td>
<td>-0.06</td>
<td>0.05</td>
<td>0.14</td>
<td>0.10</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>11.78</td>
<td>13.84</td>
<td>14.60</td>
<td>15.41</td>
<td>15.02</td>
<td>14.92</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>-</td>
<td>3.57</td>
<td>3.64</td>
<td>4.04</td>
<td>3.88</td>
<td>3.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-</td>
<td>4.19</td>
<td>3.83</td>
<td>4.18</td>
<td>3.93</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-</td>
<td>3.19</td>
<td>3.52</td>
<td>4.49</td>
<td>4.23</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>Freeze-dried</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>5</td>
<td>88.75</td>
<td>88.90</td>
<td>88.96</td>
<td>88.38</td>
<td>88.58</td>
<td>87.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>88.75</td>
<td>88.28</td>
<td>87.95</td>
<td>87.35</td>
<td>88.33</td>
<td>87.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>88.75</td>
<td>88.36</td>
<td>87.26</td>
<td>88.30</td>
<td>88.60</td>
<td>87.43</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>5</td>
<td>-</td>
<td>-0.23</td>
<td>-0.25</td>
<td>-0.56</td>
<td>-0.51</td>
<td>-0.33</td>
<td>-0.31</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-</td>
<td>-0.23</td>
<td>-0.22</td>
<td>-0.41</td>
<td>-0.36</td>
<td>-0.35</td>
<td>-0.22</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-</td>
<td>-0.23</td>
<td>-0.31</td>
<td>-0.33</td>
<td>-0.53</td>
<td>-0.42</td>
<td>-0.25</td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>12.39</td>
<td>12.17</td>
<td>12.07</td>
<td>12.61</td>
<td>12.46</td>
<td>12.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>12.39</td>
<td>12.48</td>
<td>12.81</td>
<td>13.40</td>
<td>12.70</td>
<td>13.05</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>-</td>
<td>0.27</td>
<td>0.51</td>
<td>0.51</td>
<td>0.21</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-</td>
<td>0.48</td>
<td>0.92</td>
<td>1.73</td>
<td>0.54</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-</td>
<td>0.54</td>
<td>1.87</td>
<td>0.64</td>
<td>0.30</td>
<td>1.77</td>
<td></td>
</tr>
</tbody>
</table>

¹All results are presented as mean of triplicate.

높은 것으로 판단되었다.

색차와 갭변도 변화

저장 초기 분무조 약주분말의 a*값이 동결조 약주분말에 비해 높고 b*값이 낮은 것은 마른 착즙력과 대추유료의 건조조건에 따른 색차변화(21,24)와 일치하는 경향이었다. 저장중 분무조 약주분말의 L값은 초기 84.81에서 5°C 저장 20일에 87.27, 50일에 87.33으로, 25°C 저장 20일에 86.65, 50일에 87.42로 증가하였다. 그러나 저장 중으로 증가 양이 보다 저장 10일까지 다소 다르게 상승한 후 50일까지는 그 변화량이 작은 것으로 나타났다. 또한 a*값과 b*값은 L값의 변화와 반비례하여 저장 10일까지의 변화량이 가장 큰 것으로 나타났다. 반면, 동결조 약주분말은 L값은 저장온도에 관계없이 저장 40일까지 변화량이 크지 않았으며 a*값과 b*값은 초기값에 비해 변화가 거의 없는 것으로 나타났다. 색차와 비교해 보면 분무조 약주분말은 저장 10일에서 3-4 수준으로 초기 실험과 비교하여 약간 감소한 것으로 보이며 반면 동결조 약주분말은 저장 40일까지 0.5 수준으로 색차를 거의 감지할 수 없었다(Table 5). 한편, 저장 중 분무조 약주분말의 초기 갭변도는 0.10이었으며, 25°C 저장 20일에서는 0.27, 40일에서는 0.30, 50일에서는 0.32로 증가하는 경향을 나타내었다. 반면, 동결조 약주분말의 초기 갭변도는 0.07이었으며, 25°C 저장 20일에서는 0.04, 40일에서는 0.06, 50일에서는 0.09로 동결조 약주분말이 분무조 약주분말에 비해 저저장기간의 경과에 따른 갭변도 변화가 적었다는 것을 알 수 있었다(Fig. 7).

![Fig. 7. Change of browinng index of takju powder during storage at different temperatures.](image-url)

총균수 변화

분무조 약주분말의 초기균수는 1.2×10⁶ CFU/g이었으며, 저저장기간이 경과 할수록 점진적으로 증가하여 5°C 저장 50일에 5.2×10⁶ CFU/g, 15°C 저장 50일에 7.2×10⁶ CFU/g, 25°C 저장 50일에 9.4×10⁶ CFU/g를 나타내었다. 반면, 동결조 약주분말의 초기균수는 2.1×10⁶ CFU/g이었으나, 5°C 저장 50일에 1.8×10⁷ CFU/g, 15°C 저장 50일에 2.1×10⁷ CFU/g, 25°C 저장 50일
에 2.7×10^6 CFU/g을 나타내어 초기균수와 유사하거나 완만히 감소하는 경향을 나타내었다(Fig. 8). 동결건조 타주분말의 경우 수분증량이 5% 수준인 점을 감안할 때 저장기간 전반에 걸쳐 초기미생물 수증을 유지하는 것으로 판단되며, 본무건조 타주분말의 경우 저장 30일에서는 초기균수에 비해 대략 4-8배 가량 증가된 균수를 나타내었으나 낮은 수분증량(6-7%)을 감안할 때 저장기간 중 미생물 변화는 그다지 크지 않고, 특히 5°C에서의 미생물 변화는 초기균수에 비교할 때 유의할 수준은 아닌 것으로 판단된다.

항기성분의 변화
주로는 접가하여 담근한 백포 4일째의 밀발 타주를 본무건조 및 동결건조 타주분말에서 GC 및 GC-MS에 의하여 동정한 항기성분은 약 20종이었으며, 이러한 항기성분은 Lee와 Choi(2010)에서 단급식 후 13-14일이었으나 발효 3일째 17-19일, 발효 16일에 27-28일이었다는 결과와도 일치하였다. 25°C 저장중 항기성분 변화는 Table 6과 같다. 본무건조 타주분말의 항기성분 수는 건조 직후 약 10종이었으나 저장기간이 경과함에 따라 저장 10일에서는 acetic acid 및 hydrazide가 생성되었으며 저장 50일에서는 3-methyl-1-butanol 등 9종이 추가로 검출되었다. 이 중 octane, 1,3,5-cycloheptatriene, 2,7-dimethyl-undecane 등이 상대적으로 peak area가 증가한 반면 total peak area는 감소하는 것으로 나타났다. 항기성분의 상대적량(면적비율, peak area%)은 저장기간에 따라 차이가 있으나 nonaldehyde, 2,6-bis(1,1-dimethyl)-4-methyl-phenol, 3,6-dialydr-3-methyl-2H-pyran-2-one, 3-methyl butanal, benzenethanol, undecane 순으로 상대적 함량이 높아 본무건조 타주분말의 주 항기성분으로 나타났다. 또한, 일반적인 타주에서 상대적 peak 함량이 가장 높은 ethanol은 검출되지 않았으며 nonaldehyde, 2,6-bis(1,1-dimethyl)-4-methyl-phenol, 3,6-dialydr-3-methyl-2H-pyran-2-one은 저장기간이 경과함에 따라 감소하였다. 한편, 검출된 항기성분은 타주분말의 항기성을 나타내는 본무건조 타주분말의 단지 전반에 걸쳐 가장 많은 약 18종이 검출되었다. 저장기간 중 본 무건조 타주분말은 건조 후 10종이 검출되었고 동결건조 타주분말은 18종이 검출된 점을 일반적으로 동결건조가 가열건조에 비해 약간은 적어 항기성을 상대적 약이 많다고 할 결과와 일치하는 것이다. 저장기간이 경과함에 따라 저장 10일에는 2-butanol이 검출되었으나 1-propanol-1-D1 등 5종이 소멸되었고, 저장 50일에는 octane, formic acid 및 ethyl ester 등이 추가로 소멸하여 total peak area도 감소하는 것으로 나타났다. 그리고 항기성분의 peak area는 저장기간에 따라 차이가 있으나 2,6-bis(1,1-dimethyl)-4-methyl-phenol, nonaldehyde, 3-methyl butanal, α-hydroxy-benzenacetic acid 및 ethyl ester, benzenethanol, 3,6-dialydr-3-methyl-2H-pyran-2-one 순으로 상대적 함량이 높아 동정하여 살펴본。

Table 6. Volatile flavor compounds identified in spray-dried takju powder during storage at 25°C by GC and GC-MS (Unit: peak area %)

<table>
<thead>
<tr>
<th>Compound</th>
<th>0</th>
<th>10</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-methyl butanal</td>
<td>9.78</td>
<td>12.94</td>
<td>11.80</td>
</tr>
<tr>
<td>3-ethoxy-1-propene</td>
<td>0.68</td>
<td>0.33</td>
<td>1.02</td>
</tr>
<tr>
<td>3-methyl-1-butanol</td>
<td>1.56</td>
<td>3.93</td>
<td>2.11</td>
</tr>
<tr>
<td>2-butanol</td>
<td>-</td>
<td>-</td>
<td>0.81</td>
</tr>
<tr>
<td>2,3-butanediol</td>
<td>-</td>
<td>-</td>
<td>0.34</td>
</tr>
<tr>
<td>2-hydroxy-propanoic acid, ethyl ester</td>
<td>0.49</td>
<td>2.27</td>
<td>2.12</td>
</tr>
<tr>
<td>formic acid, ethyl ester</td>
<td>-</td>
<td>-</td>
<td>0.50</td>
</tr>
<tr>
<td>1-butanol</td>
<td>-</td>
<td>-</td>
<td>0.55</td>
</tr>
<tr>
<td>phenol</td>
<td>-</td>
<td>-</td>
<td>1.26</td>
</tr>
<tr>
<td>1,3,5-cycloheptatriene</td>
<td>3.58</td>
<td>4.41</td>
<td>6.67</td>
</tr>
<tr>
<td>2,7-dimethyl-undecane</td>
<td>-</td>
<td>0.33</td>
<td>2.49</td>
</tr>
<tr>
<td>benzenethanol</td>
<td>4.39</td>
<td>10.36</td>
<td>14.65</td>
</tr>
<tr>
<td>1-propanol-1-D1</td>
<td>-</td>
<td>0.65</td>
<td>1.23</td>
</tr>
<tr>
<td>acetic acid, hydrazide</td>
<td>-</td>
<td>2.09</td>
<td>2.55</td>
</tr>
<tr>
<td>α-hydroxy-benzenacetic acid, ethyl ester</td>
<td>2.18</td>
<td>8.62</td>
<td>7.98</td>
</tr>
<tr>
<td>3,6-daldehyde-3-methyl-2H-pyran-2-one</td>
<td>14.88</td>
<td>6.73</td>
<td>6.89</td>
</tr>
<tr>
<td>nonaldehyde</td>
<td>38.80</td>
<td>8.68</td>
<td>6.14</td>
</tr>
<tr>
<td>2,6-bis(1,1-dimethyl)-4-methyl-phenol</td>
<td>23.66</td>
<td>38.65</td>
<td>23.57</td>
</tr>
</tbody>
</table>

Total peak area 1,982,995 1,342,939 668,452
건조 탁주분말에 있어 주 항기성분으로 나타났고 분무경조 탁주
분말과는 다소 차이가 있었다.

요 약
탁주를 활용하여 재료, 제료용 품질개선제로 개발하고자 주로
찰가 맹염 탁주를 30°C에서 4시간 발효하여 분무 및 동결 건조
한 탁주 분말의 저장성 (5, 15 및 25°C, 50일) 품질변화를 조사하였.
수분 함량은 저장 50일여 분무간조 탁주분말이 초기 6.64%에서
7.24-7.38%로, 동결간조 탁주분말이 초기 4.86%에서 5.43-
5.61%로 증가하였으며, 흡수潮분한량은 초기값과 큰 차이를 나
타내지 않았으나 다소 증가하는 경향을 나타내었다. 유기산은 저장
50일여 분무간조 탁주분말이 초기 3,949.9 mg%에서 805.9-
922.3 mg%으로, 동결간조 탁주분말이 초기 5,171.5 mg%에서
3,646.0-4,110.2 mg%로 감소하였다. 아미노산 질소 함량은 저장 50
일에 분무간조 탁주분말이 초기 1.2%에서 1.9-2.2%로, 동결간조
탁주분말은 초기 1.9%에서 2.2-2.5%로 증가하였다. 중합 및 환원
당 함량은 저장 50일여 분무간조 탁주분말이 초기 17.2% 및 4.0%
에서 25.9-27.3% 및 5.8-6.9%로, 동결간조 탁주분말이 초기 19.1%
및 5.2%에서 29.2-30.2% 및 8.3-8.8%로 증가하였다. 저장기간의 경과에 따라 분무간조 분말은 L 및 b값이 서서히 증가한 반면,
동결간조 분말은 L값은 감소하고 b값은 증가하였다. 총황은 분
무간조 탁주분말이 초기 1.2x10³ CFU/g에서 5.2x10³-9.4x10³
CFU/g로, 동결간조 탁주분말이 초기 2.1x10³ CFU/g에서 1.8x
10³-2.7x10³ CFU/g로 초기값과 큰 차이를 나타내지 않았다. 분
무간조 및 동결간조 탁주분말에서 GC-MS로 동정한 주요 항기성
분은 저장초기 분무간조 탁주분말에서 약 10종, 동결간조 탁주분
말에서 약 18종이었으며 저장기간의 경과에 따라 감소하였다.

문헌
1. Jeong HK. A view of Korean alcholic liquor industry in 21st
2. Bae SM. The superiority of Korean traditional wines and their
Tech. 7: 42-47 (1994)
4. Song JC, Park HJ. Takju brewing using the uncooked germed
5. Yang JY, Lee KH. Shelf-life and microbiological study of San-
6. Seo MY, Lee JK, Ahn BH, Cha SK. The changes of microflora
during the fermentation of takju and yakju. Korean J. Food Sci.
7. Lee JS, Lee TS, Noh BS, Park SO. Quality characteristics of
mash of takju prepared by different raw materials. Korean J.
8. Han EH, Lee TS, Noh BS, Lee DS. Quality characteristics in
mash of takju prepared by using different nuruk during ferme-
9. So MJH, Lee YS, Noh WS. Improvement in the quality of takju
10. Lee CH, Tae WT, Kim GM, Lee HD. Studies on the pasteuriza-
(1991)
11. Park YG, Kim HJ. Effect of ozon and UV treatment of ground-
water on the quality of wine. Korean J. Food Sci. Technol. 36:
12. Moon HJ, Chang HG, Mok CK. Selection of lactic starter for the
improvement of jeungpyum manufacturing process. Korean J.
Food Sci. 31: 1241-1246 (1999)
of raw soy flour addition to Jeung-pyun pizza on fermentation
time and viscosity of batters and texture and general desirability
(2000)
14. Yoon SJ. Quality characteristics of jeungsuny in different
rations of makkall leaves. Korean J. Food Cookery
15. Cho MK, Lee WI. Preparation of high-fiber bread with soybean
curd residue and Makkoli (rice wine) residue. J. Korean Soc.
16. Jeong JW, Park KJ. Quality characteristics of loaf bread added
with takju powder, Korean J. Food Sci. Technol. 38: 52-58
(2006)
17. AOAC. Official Method of Analysis of AOAC Intl. 16th ed.
Method 943.02. Association of Official Analytical Chemists,
Arlington, VA, USA (1995)
18. Han EH, Lee TS, Noh BS, Lee DS. Quality characteristics in
mash of takju prepared by using different nuruk during ferme-
19. Lee CY, Kim TW, Sung CK. Studies on the souring of Hansan
Sogoskju (Korean traditional rice wine). Korean J. Food Sci.
Technol. 28: 117-121 (1996)
20. Lee TS, Choi JY. Volatile flavor components in takju fermenta-
tion with mashed glutinous rice and barley rice. Korean J.
21. Kim NM, Kim DH. Quality changes of cinnamon extract pre-
pared with various drying methods. Korean J. Food Nutr. 13:
152-157 (2000)
22. Shin DB. Effects of extraction and dehydration methods on flava-
our compounds of garlic powder. PhD thesis, Chung-Ang Uni-
versity, Seoul, Korea (1996)
23. Lee SM, Lee TS. Effect of roasted rice and defatted soybean on
the quality characteristics of Takju during fermentation. J. Nat.