Increase of Solubility of Ginseng Radix by Extrusion Cooking

압출성형 공정에 의한 인삼의 수용성 성분 증대

  • Jee, Ho-Kyun (Department of Food Science and Biotechnology, Division of Advanced Technology, Joongbu University) ;
  • Cho, Young-Jin (Korea Food Research Institute) ;
  • Kim, Chong-Tai (Korea Food Research Institute) ;
  • Jang, Young-Sang (Department of Food Science and Biotechnology, Division of Advanced Technology, Joongbu University) ;
  • Kim, Chul-Jin (Korea Food Research Institute)
  • Published : 2006.06.01

Abstract

Extruded ginseng was manufactured using twin-screw extruder under 300 rpm screw speed, 21 kg/hr feed rate, $80-150^{\circ}C$ extrusion temperature, and by addition of water (12.1-30.6%). Extraction yield and contents of total carbohydrate and uronic acid in extruded ginseng at room temperature extraction (RT) increased with increasing extrusion temperature, whereas those of boiling temperature extracts (BT) were not affected by increasing extrusion temperature. Contents of nonstarch polysaccharide (NSP) in RT and BT extracts increased 340 and 142%, respectively, compared to that of raw ginseng. Main sugar compositions of NSP in RT and BT extracts were arabinose, galactose, and glucose. Extraction yields of total and crude saponins in extruded ginseng at optimize extrusion condition were higher than that of raw ginseng. In RT extracts, molecular weights of polysaccharides from raw were higher than that of extruded ginseng polymer, whereas in BT extracts molecular weights of polysaccharides from extruded ginseng were higher than those of raw ginseng polysaccharides.

압출조건 즉, screw speed, screw configuration, 압출온도 및 원료투입량 등을 고정하고, 가수량을 조절하여 압출미삼을 제조하여 냉수 및 열수에서의 추출율, 총당, 우론산 및 비전분 탄수화물의 함량과 당 조성을 분석하였다. 가수량이 감소될수록 압출온도와 SME는 증가하고, 고형분, 총당 및 우론산의 추출율도 증가하였다. 추출율 증가는 열수추출에서 보다 상온추출에서 크게 증가하였다. 최적조건인 압출온도 $155^{\circ}C$에서 처리한 미삼 분말의 비전분 탄수화물의 추출율이 증가하였고, 추출된 NSP의 분자량은 냉수추출에서는 압출처리 미삼이 열수추출에서는 대조구에서 큰 분자량이 추출되었다. NSP의 당 조성은 미삼의 비전분 다당체의 주된 구성당은 arabinose와 galactose였고, 상온에서 추출된 압출 미삼의 경우 높은 함량의 glucose가 측정되었으며, 열수에서 추출된 미삼의 비전분 다당체는 대조구와 압출미삼 모두에서 glucose 및 xylose가 측정되었다. 이상의 결과로 구연산이 첨가된 미삼과 첨가되지 않은 미삼을 이용하여 $155^{\circ}C$에서 압출성형 하는 것이 최적조건임을 확인하였다. 최적조건에서 압출성형 된 압출미삼의 냉수추출의 경우 사포닌 추추율은 대조구에 비해 약 2배가량 높게 나타났다. 또한 압출처리에 의해 사포닌의 구성 성분 중 Rg3가 생성되었다.

Keywords

References

  1. Brekhman II, Dardymov IV. New substance of plant origin which increase nonspecific resistance. Annu. Rev. Pharmacol. 9: 419-430 (1969) https://doi.org/10.1146/annurev.pa.09.040169.002223
  2. Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside-Rh2 and adjuvant effects of cisplatin in vivo. Anticancer Drugs 2: 63-67 (1991) https://doi.org/10.1097/00001813-199102000-00009
  3. Singh VK, Agarwal SS, Gupta BM. Immunomodulatory activity of Panax ginseng extract. Planta Med. 50: 462-465 (1984) https://doi.org/10.1055/s-2007-969773
  4. Huo Y, Chen Y. The effect of Panax ginseng extracts (GS) on insulin and coticosteroid receptors. J Trad. Chi. Med. 8: 293-295 (1988)
  5. Benishin CG. Action of ginsenoside Rbl, on choline uptake in central cholinergic nerve endings. Neurochem. Int. 21: 1-5 (1992) https://doi.org/10.1016/0197-0186(92)90061-U
  6. Kim HY, Chen X, Gillis CN. Ginsenoside protect pulmonary vascular enthothelium against free radical induced injury. Biochem. Biophys. Res. Comm. 189: 670-676 (1992) https://doi.org/10.1016/0006-291X(92)92253-T
  7. Kang SY, Kim ND. The antihypertensive effect of red ginseng saponin and the endothelium-derived vascular relaxation. Korean J. Ginseng Sci. 18: 175-182 (1992)
  8. Shibata S, Tanaka O, Soma K, Iita Y, Ando T, Nakamura, H. Studies on saponins and sapogenins of ginseng. The structure of panaxatriol. Tetrahedron. Lett. 42: 207-213 (1965)
  9. Ogita S, Samugawa K. Clinical effectiveness of Korean ginseng on patients with climacteric distubances. Ginseng Rev. 18: 95-97 (1994)
  10. Shibata S, Tanaka O, Ando T, Sado M, Tsushima S, Ohsawa T. Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem. Pharm. Bull. 14: 595-600 (1966) https://doi.org/10.1248/cpb.14.595
  11. Shin JY, Choi EH, Wee JJ. New methods for separation of crude ginseng saponins. Korean J. Food Sci. Technol. 33: 166-172 (2001)
  12. Gao QP, Kiyohra H, Cyong JC, Yamada H. Chemical properties and anti-complementary activities of heteroglycans from leaves of Panax ginseng. Planta Med. 57: 132-136 (1989) https://doi.org/10.1055/s-2006-960049
  13. Konno C, Sugiyana K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycemic activity of panaxans A, B, C, D, and E glycans of panax ginseng root. Planta. Med. 50: 434-436 (1984) https://doi.org/10.1055/s-2007-969757
  14. Gao QP, Kjyohara H, Jong JC, Yamada H. Further structural studies of anti-complementary acidic heteroglycans from the leaves of Panax ginseng C.A. Meyer. Carbohydr. Res. 196: 111-125 (1990) https://doi.org/10.1016/0008-6215(90)84110-G
  15. Lee SD, Lee KS, Okuda H, Hwang WI. Inhibition of curde acidic polysaccharide of korean ginseng on lipolytic action of toxohormone-L from cancerous ascites fluid. Korean J. Ginseng Sci. 14: 10-13 (1990)
  16. Masuno H, Yamasaki N, Okuda H. Purification and characterization of a lipolytic factor (toxohormone-L) from cell-free fluid of ascites sarcoma 180. Cancer Res. 41: 184-188 (1981)
  17. Kwon Jh, Belanger JMR, Yaylanyan VA. Application of the microwave-assisted process to the fast extraction of ginseng saponins. Food. Res. Int. 36: 491-498 (2003) https://doi.org/10.1016/S0963-9969(02)00197-7
  18. Ralet MC, Della Vall G, Thibault JF. Raw and extruded fibre from pea hulls. Part I. Composition and physico-chemical properties. Carbohyd. Polym. 20: 17-23 (1993) https://doi.org/10.1016/0144-8617(93)90028-3
  19. Hwang JK, Kim CJ, Kim JT. Extrusion of apple pomace facilitaties. J. Food Sci. 63: 841-844 (1998) https://doi.org/10.1111/j.1365-2621.1998.tb17911.x
  20. Anderson RA, Conway HF, Pfeifer VF, Griffin Tr, EJ. Gelatinization of com grits by roll-and extrusion cooking. Cereal Sci. Today. 14: 4-12 (1969)
  21. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28: 350-366 (1956) https://doi.org/10.1021/ac60111a017
  22. Southgate DAT. Determination of Food Carbohydrates, Oxford University Press, London, England. pp. 99-144 (1976)
  23. Korea Ginseng and Tobacco Research Institute. Analytical Methods of Ginseng Components. Jeilmunhwa-sa, Taejeon, Korea. pp. 57-61 (1991)
  24. Theander O, Aman P, Westerlund E, Andersson R, Pettersson D. Total dietary fiber as neutral sugar residues, uronic acid residue, and kalson lignin (The uppsal method): Collaborative study. J. AOAC Int. 78: 1030-1044 (1995)
  25. Feltcher SI, Richmond, P, Smith AC. An experimental study of twin screw extrusion-cooking of maize grits. J. Food Eng. 4: 291-312 (1985) https://doi.org/10.1016/0260-8774(85)90009-3
  26. Ng A, Lecain S, Parker ML, Smith AC, Waldron KW. Modification of cell-wall polymers of onion waste III. Effect of extrusion-cooking on cell-wall material of outer fleshy tissues. Carbohyd. Polym. 39: 341-349 (1999) https://doi.org/10.1016/S0144-8617(99)00025-9
  27. Matthee V, Appleddrf H. Effect of cooking on vegetable fiber. J. Food Sci. 43: 1344 (1978) https://doi.org/10.1111/j.1365-2621.1978.tb15310.x
  28. Nyman M, Palsson KE, Asp NG. Effect of processing on dietary fiber in vegetables. Lebesm. Wiss. Technol. 20: 29-39 (1987)
  29. Ralet MC, Thibault JF, Della Valle, G. Solubilization of sugarbeet pulp cell wall polysaccharides by extrusion-cooking. Lebensm. Wiss. Technol. 24: 107-112 (1991)
  30. Na K, Yun JM, Choi MJ, Hwang JK. Extraction of pectic polisaccharides from extruded ginseng fiber. Food Sci. Biotechnol. 13: 486-489 (2004)
  31. Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rbl from Panax ginseng. J. Pharm. Pharmacol. 50: 1155-1160 (1988)
  32. Hasegawa H, Sung JH, Benno Y. Role of human intestinal prevotella oris in hydrolyzing ginseng saponin. Planta Med. 63: 436-440 (1997) https://doi.org/10.1055/s-2006-957729