Isolation of Marine Bacterium Decomposing Sea tangle (Laminaria japonica) to Single Cell Detritus

다시마(Laminaria japonica)를 single cell detritus로 분해하는 해양세균의 분리

  • Yi, Kun-Wook (Faculty of Marine Bioscience and Technology, Kangnung National University) ;
  • Shin, Il-Shik (Faculty of Marine Bioscience and Technology, Kangnung National University)
  • 이건욱 (강릉대학교 해양생명공학부) ;
  • 신일식 (강릉대학교 해양생명공학부)
  • Published : 2006.04.01

Abstract

Seventy-one marine bacteria decomposing sea tangle (Laminaria japonica) into single cell detritus (SCD) were isolated from sea water, sea tangle, sea mustard (Undaria pinnatifida), sea urchin (Anthocidaris crassispina), star fish (Acanthaster planci), and turban cell (Batillus cornutus), among which 14 strains decreased cutting strength of sea tangle and had alginate-degrading activity. Marine bacterium No. 34 isolated from turban cell showed lowest cutting strength of sea tangle, strongest alginate-degrading activity, and produced high content of $5-10\;{\mu}m$ SCD from sea tangle. This strain was identified as Vibrio sp. based on morphological, physiological, and biochemical characteristics and named as Vibrio sp. YKW-34.

다시마(Laminaria japonica)를 기능성 식품소재로 활용하기 위한 예비단계로, 다세포의 다시마를 미립자의 single cell detritus(SCD)로 분해하는 해양세균을 해수, 다시마(Laminaria japonica), 미역(Undaria pinnatifida), 성게(Anthocidaris crassispina), 불가사리(Acanthaster planci), 소라(Batillus cornutus)로부터 분리하였다. 분리한 71개의 균주 중 다시마 조체의 연화능과 알긴산 분해활성을 동시에 가지는 균주는 14개이었으며, 균주 No. 34가 가장 강한 다시마 조체의 연화능과 알긴산 분해활성을 나타내었다. 균주 No. 34는 배양 15일 만에 다세포의 다시마를 미립자의 SCD 형태로 분해하였으며, 그 크기는 $5-10{\mu}m$이었다. 균주 No. 34는 vibrio sp.으로 동정되었으며, Vibrio sp. YKW-34로 명명하였다.

Keywords

References

  1. Lahaye M. Marine algae as sources of fibers; Determination of souble and in souble dietary fiber contents in some vegetables. J. Sci. Food Agric. 54: 587-594 (1991) https://doi.org/10.1002/jsfa.2740540410
  2. Cheun BS, Yoo JS, Suzuki T, Watanabe E. Tissue biosensor tor determination of Na channel blocker for chinese drug and seaweed (Porphyra yezoensis Ueda). Korean J. Biotechnol. Bioeng. 13: 1-6 (1998)
  3. Nakazawa Y, Kurodad H, Abe F, Nishino T, Otsuki M, Umezaki I. Antitumor effect of water-extracts from marine algae (I). Chemotherapy 22: 1435-1440 (1974)
  4. Yamamoto I, Nagumo T, Takahasi M, Fujihara M, Suzuki Y, Iizima I. Antitumor effect of seaweeds III. Antitumor effects of an extract from Sargassum Kjellmamianum. J. Exp. Med. 51: 187-192 (1981)
  5. Lee HO, Kim DS, Do JR, Ko YS. Angiotensin-I Converting enzyme inhibitory activity of algae. J. Korean Fish. Soc. 32: 427-431 (1999)
  6. Pothakamury UR, Canovas GVB. Fundamental aspects of controlled release in foods. Trends Food Sci. Technol. 6: 397-406 (1995) https://doi.org/10.1016/S0924-2244(00)89218-3
  7. Duggins DO, Simenstad CA, Estes JA. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245: 170-173 (1989) https://doi.org/10.1126/science.245.4914.170
  8. Waksman SA, Allen MC. Decomposition of polyuronides by fungi and bacteria. J. Bacteriol. 28: 213-220 (1934)
  9. Linley EAS, Newell RC, Bosam SA. Heterotrophic utilization of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). I. Development of microbial communities associated with the degradation of kelp mucilage. Mar. Ecol. Prog. Ser. 4: 31-41 (1981) https://doi.org/10.3354/meps004031
  10. Robertson ML, Mills AL, Zieman JC. Microbial synthesis of detritus-like particulates from dissolved organic carbon released by tropical seagrasses. Mar. Ecol. Prog. Ser. 7: 279-285 (1982) https://doi.org/10.3354/meps007279
  11. Uchida M, Nakata K, Maeda, M. Introduction of detrital food webs into an aquaculture system by supplying single cell algal detritus produced from Laminaria japonica as a hatchery diet for Artemia nauplii. Aquaculture 154: 125-137 (1997) https://doi.org/10.1016/S0044-8486(97)00047-1
  12. Uchida M, Murata M. Fermentative preparation of single cell detritus from sea mustard, Undaria pinnatifida, suitable as a replacement hatchery diet for unicellular algae. Aquaculture 207: 345-357 (2002) https://doi.org/10.1016/S0044-8486(01)00792-X
  13. Uchida M, Nakayama A. Isolation of Laminaria-frond decomposing bacteria from Japanese coastal waters. Nippon Suisann Gakkaishi 59: 1865-1871 (1993) https://doi.org/10.2331/suisan.59.1865
  14. Kim HS, Bae TJ. Studies on the hydrolysis of seeweed using microorganisms and its application. J. Korean. Fish. Soc. 35: 438-444 (2002)
  15. Ando Y, Inoue K. Decomposition of alginic acid by microorganism-IV. On the Vibrio-type bacteria, newly isolated from the decaying Laminaria. Bull. Japan. Soc. Sci. Fish. 27: 339-341 (1961) https://doi.org/10.2331/suisan.27.339
  16. Ando Y, Inoue K. Decomposition of alginic acid by microorganism-V. On the alginase of Vibrio sp. SO-20 strain. Bull. Japan. Soc. Sci. Fish. 27: 342-347 (1961) https://doi.org/10.2331/suisan.27.342
  17. Ando Y, Inoue K. Decomposition of alginic acid by microorganism-V. On the modes of action of two alginases. Bull. Japan. Soc. Sci. Fish. 31: 552-557 (1965) https://doi.org/10.2331/suisan.31.552
  18. Uchida M. Formation of single cell detritus densely covered with bacteria during experimental degradation of Laminaria japonica Thalli.. Nippon Suisann Gakkaishi 62: 731-736 (1996)
  19. Onishi T, Suzuki M, Kikuchi T. The distribution of polysaccharide hydrolase activity in gastropods and bivalves. Bull. Japan. Soc. Sci. Fish. 51: 301-308 (1985) https://doi.org/10.2331/suisan.51.301
  20. Hallohan BT, Dabinett PE, Gow JA. Bacterial succession during biodegradation of the kelp Alaria esculenta (L.) Greville. Can. J. Microbiol. 32: 505-512 (1986) https://doi.org/10.1139/m86-092