Optimum Conditions for Production of Mevinolin from the Soybean Fermented with Monascus sp.

홍국균(Monascus sp.) 발효콩의 mevinolin 생산 조건

  • Pyo, Young-Hee (Traditional Food Research Division, Korea Food Research Institute)
  • 표영희 (한국식품연구원, 전통식품연구본부)
  • Published : 2006.04.01

Abstract

Soybeans were fermented with Monascus sp. to select strain with highest mevinolin production through solidstate fermentation. Monascus pilosus IFO 480 showed highest yield of 2.2 mg mevinolin per g dry weight without citrinin, toxic fungal secondary metabolite, as byproduct. Nutrient broth used for soybean fermentation with Monascus sp. was composed of 3.4 rice powder, 1.1 peptone, 2.6 glycine, 12.9 glucose, initial pH 6.0 (%, w/v). Mevinolin was present in fermentation substrate largely as hydroxy carboxylate form (open lactone, 91.8-96.8%), which is used as hypocholesterolemic agent. Production of mevinolin continued up to 50 days fermentation time at $30^{\circ}C$.

20여종의 Monascus속의 균주로 부터 mevinolin의 생산능이 우수하면서도 곰팡이 독소성분 citrinin을 생산하지 않는 우량균주를 선발하였으며, 콩시료에 대한 고상발효를 최적화하기 위한 영양배지의 조성물이 검토되었다. 선발된 M. pilosus IFO 480으로 발효시킨 홍국콩 발효물에 함유된 mevinolin의 주요 화합물은, 약리학적 활성형(drug)의 mevinolinic acid 밝혀졌다(91.8%). 따라서 홍국 발효콩은 생체활성형의 항 콜레스테롤 성분을 최대 0.22% 까지 함유하는, 안전한 건강 기능성식품 소재로서의 활용가능성이 높은 것으로 평가할 수 있다.

Keywords

References

  1. Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M. Constituents of red yeast rice, a traditional chinese food and medicine. J. Agric. Food Chem. 48: 5220-5225 (2000) https://doi.org/10.1021/jf000338c
  2. Wild D, Toch G, Humpf HU. New Monascus metabolite isolated from red yeast rice (Ankak, Red koji). J. Agric. Food Chem. 50: 3999-4002 (2002) https://doi.org/10.1021/jf020023s
  3. Wang IK, Lin-Shiau SY, Chen PC, Lin JK. Hypotriglyceridemic effect of Ankak (fermented rice product of Monascus sp.) in rat. J. Agric. Food Chem. 48: 3183-31 89 (2000) https://doi.org/10.1021/jf9909353
  4. Endo A, Hasumi K, Negishi S. Monacolins J and L new inhibitors of cholesterol biosynthesis produced by Monascus ruber. J. Antibiot. 38: 420-422 (1985) https://doi.org/10.7164/antibiotics.38.420
  5. Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 58: 555-564 (2002) https://doi.org/10.1007/s00253-002-0932-9
  6. Wei W, Li C, Wang Y, Su H, Zhu J, Kritchevsky D. Hypolipidemic and anti-atherogenic effects of long-term cholestin (Monascus purpureus-fennented rice, red yest rice) in cholesterol fed rabbits. J. Nutr. Biochem. 14: 314-318 (2003) https://doi.org/10.1016/S0955-2863(03)00051-2
  7. Lin CF. Isolation and cultural conditions of Monascus sp. for the production of pigment in a submerged culture. J. Ferment. Technol. 51: 407-414 (1973)
  8. Lin TF, Demain AL. Effect of nutrition of Monascus sp. on formation of red pigments. Appl. Microbiol. Biotechnol. 36: 70-75 (1991) https://doi.org/10.1007/BF00164701
  9. Blanc PJ, Loret MO, Goma G. Production of citrinin by various species of Monascus. Biotechnol. Lett. 17: 291-294 (1995) https://doi.org/10.1007/BF01190639
  10. Wang YZ, Ju XL, Zhou YG. The variability of citrinin production in Monascus type cultures. Food Microbiol. 22: 145-148 (2005) https://doi.org/10.1016/j.fm.2004.01.006
  11. Hendrickson L, Davis CR, Roach C, Nguyen DK, Aldrich T, McAca PC, Reeves CD. Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem. Biol. 6: 429-439 (1999) https://doi.org/10.1016/S1074-5521(99)80061-1
  12. Shinizu T, Kinoshita H, Ishihara S, Sakai K, Nihira T. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl. Environ. Microbiol. 71: 3453-3457 (2005) https://doi.org/10.1128/AEM.71.7.3453-3457.2005
  13. Friedrich J, Zuzek M, Bencina M, Cimerman A, Strancar A, Radez I. High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths. J. Chromatogr. A 704: 363-367 (1995) https://doi.org/10.1016/0021-9673(95)00096-6
  14. Li YG, Zhang F, Wang ZT, Hu ZB. Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J. Pharmacol. Biomed. Anal. 35: 1101-1112 (2004) https://doi.org/10.1016/j.jpba.2004.04.004
  15. Manzoni M, Bergomi S, Rollini M, Cavazzoni V. Production of statins by filamentous fungi. Biotechnol. Lett. 21: 253-257 (1999) https://doi.org/10.1023/A:1005495714248
  16. Bang IY, Whang SW, Kim JW, Kim SY, Park CS. Screening of fungal strains producing lovastatin, an antihypercholesterolemic agent. Korean J. Food Sci. Technol. 35: 442-446 (2003)
  17. Park SY, Mah JH, Choi YI, Kim DH, Hwang HJ. Optimization of red pigmentation and effect of the metabolites produced by Monascus strains on microbial inhibition and colorization in processed ham. Korean J. Appl. Microbiol. Biotechnol. 27: 172-178 (1999)
  18. Kim HJ, Hwang Bo MH, Lee HJ, Yu TS, Lee IS. Antibacterial and anticancer effects of Kimchi extracts prepared with Monascus purpureus Koji paste. Korean J. Food Sci. Technol. 37: 618-623 (2005)
  19. Cho CH, Seo DJ, Woo GJ, Kang DK. Functional red pigment production in solid-state fermentation of barley by Monascus sp. EBF1. Korean J. Microbiol. Biotechnol. 30: 253-257 (2002)
  20. Kwak EJ, Cha SK, Lim SI. The optimal condition for the production and extraction of monacolin K from red-Koji. Korean J. Food Sci. Technol. 35: 830-834 (2003)
  21. Hajjaj H, Niederberger P, Duboc P. Lovastatin biosynthesis by Aspergillus terre us in a chemically defined medium. Appl. Environ. Microbiol. 67: 2596-2602 (2001) https://doi.org/10.1128/AEM.67.6.2596-2602.2001
  22. Reinhard H, Zimmerli B. Reversed-phase liquid chromatographic behavior of the mycotoxins citrinin and ochratoxin A. J. Chromatogr. A 862: 147-159(1999) https://doi.org/10.1016/S0021-9673(99)00929-2
  23. Thomson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA. 289: 1681-1690 (2003) https://doi.org/10.1001/jama.289.13.1681
  24. Paoletti R, Corsini A, Bellosta S. Pharmacological interaction of statins. Atherosclerosis 3: 35-40 (2002) https://doi.org/10.1016/S1567-5688(02)00002-8
  25. Lai LST, Tsai TH, Wang TC, Cheng TY. The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures. Enz. Microbiol. Technol. 36: 737-748 (2005) https://doi.org/10.1016/j.enzmictec.2004.12.021
  26. Lopez JLC, Sanchez perez JA, Fernandez Sevilla JM. Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enz. Microbiol. Technol. 33: 270-277 (2003) https://doi.org/10.1016/S0141-0229(03)00130-3
  27. Sanchez S, Demain AL. Metabolic regulation of fermentation processes. Enz. Microbiol. Technol. 31: 895-906 (2002) https://doi.org/10.1016/S0141-0229(02)00172-2
  28. Sabater-Vilar M, Maas RFM, Fink-Gremmels J. Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutat. Res. 444: 7-16 (1999) https://doi.org/10.1016/S1383-5718(99)00095-9
  29. Bilgrami KS, Sinha SP, Jeswal P. Nephrotoxic and hepatotoxic effects of citrinin in mice. Proc. Indian Nat. Sci. Acad. B54: 35-37(1988)
  30. Comerio R, Virginia E, Pinto F, Vaamonde C. Influence of water activity on Penicillium citrinum growth and kinetics of citrinin accumulation in wheat. Int. J. Food Microbiol. 42: 219-223 (1998) https://doi.org/10.1016/S0168-1605(98)00081-6