Hepatoprotective Effects of Lycium chinense Mill Fruit Extracts and Fresh Fruit Juice

구기자 추출물과 생과즙의 간독성 보호효과

  • Kang, Kyung-Il (Department of Food Engineering, Graduate School of Life Science and Biotechnology, Korea University) ;
  • Jung, Jin-Young (Department of Food Engineering, Graduate School of Life Science and Biotechnology, Korea University) ;
  • Koh, Kyung-Hee (Department of Food Science and Nutrition, The Catholic University of Korea) ;
  • Lee, Cherl-Ho (Department of Food Engineering, Graduate School of Life Science and Biotechnology, Korea University)
  • 강경일 (고려대학교 생명과학대학 식품공학과) ;
  • 정진영 (고려대학교 생명과학대학 식품공학과) ;
  • 고경희 (가톨릭대학교 식품영양학과) ;
  • 이철호 (고려대학교 생명과학대학 식품공학과)
  • Published : 2006.02.01

Abstract

Hepatoprotective effects of Bulro Kugi (Lycium chinense Mill) fruit extracts on $CCl_4-administered$ rats were investigated in vivo. Administration of $CCl_4$ increased plasma glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and lactate dehydrogenase (LDH) activities, induced lipid peroxidation as measured by malondialdehyde (MDA) content of rat liver, and significantly increased liver weight. Feeding of B. Kugi (Lycium chinense Mill) slightly increased body weight gain, although not significantly different from normal group. B. Kugi (Lycium chinense Mill) fruit extracts reduced blood cholesterol level and inhibited $CCl_4-induced$ increases of plasma GPT, GOT, and LDH activities, whereas increased contents of MDA and cytochrome P-450, and GST activity in liver tissue of $CCl_4-administered$ rats. Roasted B. Kugi (Lycium chinense Mill) fruit extract showed highest hepatoprotective effect among samples tested. These results suggest water extracts of B. Kugi (Lycium chinense Mill) fruit possess promising hepatoprotective activity against $CCl_4-induced$ hepatic damage in rats.

국내에서 선별 육종된 불로 구기자의 처리방법에 따른 간기능 보호효과를 측정하기 위하여 사염화탄소$(CCl_4)$ 투여로 급성 간독성을 유발시킨 흰쥐를 대상으로 연구하였다. 건조구기자 추출물(DFE), 볶은 구기자 추출물 (RFE), 그리고 생과즙(FFE)을 경구 투여한 결과 군간의 체중증가량은 차이를 나타내지 않았다. 한편, 체중 100 g 당 간 무게는 처리조건에 관계없이 구기자 추출물 및 생과즙 투여군이 유의적으로 낮은 간 무게를 나타내었다(p<0.01). 이것은 구기자 추출물과 생과즙 섭취가 $CCl_4$ 투여에 의한 지방간 형성 또는 간 독성에 의한 간 무게증가를 다소 완화하여준 효과를 나타내는 것으로 판단된다. 사염화탄소$(CCl_4)$ 투여에 의하여 흰쥐의 혈청 GPT 및 GOT 활성과 LDH 활성은 유의적으로 증가하였으나 볶은 구기자 추출물 투여군(RFEC)과 생과즙 투여군(FFJC) 모두 GPT, GOT 활성이 유의적으로 감소되었다. 혈중 총 콜레스테롤 함량은 구기자 추출물과 생과즙 투여군 모두 대조군(CON)과 비교하여 유의적인 증가를 나타내지 않았고 중성 지방함량은 대조군에 비해 유의적인 증가를 나타내었다(p<0.05). 간 조직의 MDA 함량과 GST, cytochrome P-450 활성 결과로 보아 구기자 추출물과 생과즙을 섭취 시 사염화탄소에 의한 독성을 완화시키는 것으로 나타났다. 따라서 이러한 모든 결과를 종합해 볼 때, 구기자 추출물과 생과즙은 $CCl_4$ 투여로 인한 지질 과산화, 지방변성, 간 세포 괴사 등을 억제 시키는 간 독성 보호 효과가 있는 것으로 생각된다.

Keywords

References

  1. Lee BY, Kim EJ, Choi HD, Kim YS, Kim IH, Kim SS. Physicochemical properties of Boxthorn (Lycii fructus) hot water extracts by roasting conditions. Korean J. Food Sci. Technol. 27: 768-772 (1995)
  2. Jian Y. Modem Study of Chinese Drugs: Clinical Applications. Ancient Book Press of Chinese Medicine, China (1997)
  3. Jiangsu. Chinese Medicine Dictionary. Shanghai Science and Technology Press Shanghai, China (1979)
  4. Yubin J. Pharmacological Action: Application of available composition of traditional chinese medicine. Heilongjiang Science and Technology Press, Heilongjiang (1995)
  5. Heo J. Dongibokam. Namsadang, Seoul, Korea. pp. 738 (1998)
  6. Finkelstein JD, Kyle WE, Harris BJ. Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch. Bioehem. Biophys. 146: 84-92 (1971) https://doi.org/10.1016/S0003-9861(71)80044-9
  7. Kim HS, Park YS, Kim CI. Changes of serum lipid profiles after eating Lycii Fructus in rats fed high fat diet. Korean Nutr. Soc. 31: 263-270 (1998)
  8. Yoon CK, Kim HH, Chae SN, Oh MJ, Lee GH. Hepatic oxygen free radical and alcohol metabolizing enzyme activities in rats fed diets supplemented with Lycium chinense ethanol extract. J. Korean Soc. Food Sci. Nutr. 30: 668-672 (2001)
  9. Kim NJ, Youn HG, Hong ND. Pharmacological effects of Lycium chinensis. Korean Soc. Pharmacog. 25: 264-271 (1994)
  10. Kim KS, Shim SH, Jeong KH, Cheong CS. Ko KH, Park JI, Huh H, Lee BJ, Kim BK. Anti-diabetic activity of constituent of Lycii Fructus. J. App. Pharmocol. 6: 378-383 (1998)
  11. Cheongyang Boxthorn Experiment Station. Boxthorn. Chungnam, Korea, pp. 35-44 (1998)
  12. Bradford MM. A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-248 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  13. Korea Food and Drug Administration. Korea Food Additives Code. Seoul, Korea (1998)
  14. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am. J. Clin. Pathol. 28: 56-63 (1957) https://doi.org/10.1093/ajcp/28.1.56
  15. Wroblewski F, Ladue JS. Lactic dehydrogenase activity in blood. Proc. Soc. Exp. Biol. Med. 90: 210 (1955)
  16. Lowry OH, Rosebrough NJ, Farr AL. Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  17. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxide in animal tissue by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  18. Habig WH, Pabst MJ, Jackoby WB. Glutathione S-transferase: The first enzymatic step in mercapturic and formation. J. Biol. Chem. 249: 7130-7139 (1974)
  19. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsome: Evidence for its homo-protein nature. J. Biol. Chem. 239: 2370-2378(1964)
  20. Selhub J. Homocysteine metabolism. Ann. Rev. Nutr. 19: 217-246 (1999) https://doi.org/10.1146/annurev.nutr.19.1.217
  21. Barak AJ, Tuma DJ. Betaine: metabolic by-product or vital methylating agent. Life Sci. 32: 771-774 (1983) https://doi.org/10.1016/0024-3205(83)90311-9
  22. Chambers ST. Betaines: Their significance for bacteria and the renal tract. Clin. Sci. 88: 25-27 (1995) https://doi.org/10.1042/cs0880025
  23. Junnila M, Barak AJ, Beckenhauger HC, Rahko T. Betaine reduces hepatic lipidosis induced by carbon tetrachloride in sprague-dawley rats. Vet. Hum. Toxicol. 40: 263-266 (1998)
  24. Harper AE, Monson WJ, Benton DA, Elvehjen CA. The influence of protein and certain amino acids, particularly threonine, on the disposition of fat in the liver of the rats. J. Nutr. 50: 383-383 (1953) https://doi.org/10.1079/BJN19830105
  25. Burk RF, Reiter R, Lane JM. Hyperbaric oxygen protection against carbon tetrachloride hepatotoxicity in the rat. Gastroenterol. 90: 812-818 (1986) https://doi.org/10.1016/0016-5085(86)90856-5
  26. Edwards M, Keller BJ, Kauffman FC, Thurman RG. The involvement of kupffer cells in carbon tetrachloride toxicity. Toxicol. Appl. Pharmacol. 119: 275-279 (1993) https://doi.org/10.1006/taap.1993.1069
  27. Elsisi AED, Hall P, Sim WL, Earnest DL, Sipes IG. Characterization of vitamin A potentiation of carbon tetrachloride-induced liver injury. Toxicol. Appl. Pharmacol. 119: 280-288 (1993) https://doi.org/10.1006/taap.1993.1070
  28. Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000, a historical look to the future. Ann. NY Acad. Sci. 899: 136-147 (2000)
  29. Horton AA, Fairhurst S. Lipid peroxidation and mechanisms of toxicity. CRC Crit. Rev. Toxicol. 18: 27-79 (1987) https://doi.org/10.3109/10408448709089856
  30. Didem DO, Mustafa A, Goknur A, Ender E, Erdem Y, Fatma E. Evaluation of hepatoprotective effect of gentiana olivieri herbs on subacute administration and isolation of active principle. Life Sci. 72: 2273-2283 (2003) https://doi.org/10.1016/S0024-3205(03)00117-6
  31. Har BJ, Lee JY. The effect of chondroitin sulfate against $CCI_4$-induced hepatotoxicity. Bio. Pharm. Bull. 26: 622-626 (2003) https://doi.org/10.1248/bpb.26.622
  32. Castro JA. Mechanistical studies and prevention of free radical cell injury. Vol. 2, pp. 243-250. In: Proceedings of the IUPHAR 9th international congress of pharmacology. Macmillan Press, London, United Kingdom (1984)
  33. Brattin WJ, Glende EA Jr, Recknagel RO. Pathological mechanisms in carbon tetrachloride hepatotoxicity. Free Radic. Biol. Med. 1: 27-27 (1985) https://doi.org/10.1016/0748-5514(85)90026-1
  34. Boyland E, Chasseaud I.F. The role of glutathione and glutathione S-transferase in mercapturic acid biosynthesis. Adv. Enzymol. 32: 173-219 (1969)
  35. Jakoby WB. The glutathione-S-transferases: A group of multifunctional detoxification proteins. Adv. Enzymol. Relat. Areas. Mol. Biol. 46: 383-414 (1978) https://doi.org/10.1002/9780470122914.ch6
  36. Yoon CG, Park HS, Lee Sl. Effect of dietary tungstate on the liver damage in $CCI_4$-treated rats. J. Korean Soc. Food Nutr. 22: 678-684 (1993)
  37. Kim SY, Lee HS, Ryu KS, Lee EJ, Kim YJ. The hepatoprotective effect of Sangbakpi extract on carbon tetrachloride-induced hepatotoxicity in rats. Yakhak Hoeji 43: 391-396 (1999)
  38. Kim OK. Protective effects of extracts of Hovenia dulcis Thunb. on hepatotoxicity in carbon tetrachloride intoxicated rats. J. Korean Soc. Food Sci. Nutr. 30: 1260-1265 (2001)
  39. Guengerich FP. Human cytochrome P-450 enzymes. Life Sci. 50: 1471-1478 (1992) https://doi.org/10.1016/0024-3205(92)90136-D
  40. Fernandez G, Villarruel MC, Toranzo EG, Castro JA. Covalent binding of carbon tetrachloride metabolites to the heme moiety of cytochrome P-450 and its degradation products. Res. Commun. Chem. Pathol. Pharmacol. 35: 283-290 (1982)
  41. Tomasi A, Albano E, Banni S, Botti B, Corongiu F, Dessi MA, Iannone A, Vannini V, Dianzani MU. Free-radical metabolism of carbon tetrachloride in rat liver mitochondria. A study of the mechanism of activation. Biochem. J. 246: 313-317 (1987) https://doi.org/10.1042/bj2460313
  42. Le Page RN, Cheeseman KH, Osman N, Slater TF. Lipid peroxidation in purified plasma membrane fractions of rat liver in relation to the hepatoxicity of carbon tetrachloride. Cell. Biochem. Funct. 6: 87-99 (1988) https://doi.org/10.1002/cbf.290060203
  43. Lee TH. The effect of ginseng on hepatic drug metabolizing enzyme in rats. Yakhak Hoeji 25: 145-151 (1981)
  44. Bae SJ, Kim NH, Koh JB, Roh SB, Jung BM. Effects of godulbaegi (lxeris Sonchifolia H.) diets on enzyme activities of $CCI_4$ induced hepatotoxicity in rats. J. Korean Nutr. Soc. 30: 19-24 (1997)