DOI QR코드

DOI QR Code

한국근해 및 외해역에 채집된 멸치의 미토콘드리아 DNA 다양성

Mitochondrial DNA Polymorphism of the Japanese Anchovy (Engraulis japonicus Temminck & Schlegel) Collected from the Korean Offshore and Inshore Waters

  • 조은섭 (국립수산과학원 남해수산연구소) ;
  • 김주일 (국립수산과학원 남해수산연구소)
  • Cho, Eun-Seob (South Sea Fisheries Research Institute, NFRDI) ;
  • Kim, Joo-Il (South Sea Fisheries Research Institute, NFRDI)
  • 발행 : 2006.08.30

초록

멸치의 유전적 집단구조 및 지리적 거리를 조사하기 위하여 한국근해 및 외해역 12개 정점에서 채집된 멸치의 미토콘드리아 DNA control 부위를 대상으로 염기서열을 상호 비교 및 분석했다. 염기서열 분석결과 89개체 중 29 haplotype이 나타났고, 상호 염기치환율은 0-3.5% 차이를 보였다. E9 haplotype이 근해 및 외해역에서 가장 넓게 분포하고 있는 것으로 나타났다 (58.3%). 반면에, E26, E27, E28, E29 haplotype 들은 서남해역 (정점 10)에서만 보였다. PHYLIP 프로그램을 이용한 유전적 관계에서도 두개의 clade로 분리되었다. E26, E27, E28, E29 haplotype을 제외한 나머지 haplotype 들은 상호 잘 유지되는 것으로 나타났다 (bootstrap 75% 이상). 그러나 clade A와 B bootstrap은 매우 약하게 나타났다 (51%). haplotype 간의 상호분석 결과 다양도는 0.75-1.00, 염기다양도는 0.015-0.0244로 보였다.

To investigate the population structure and geographic distance among anchovies (Engraulis japonicus) in Korea, we compared and analyzed the mitochondrial DNA control region sequences (227 bp) of anchovies from 12 localities in inshore and offshore waters. The sequence analysis of 84 individuals showed 29 haplotypes, ranging in sequence divergence by pairwise comparisons from 0.3% to 3.5% (1 bp-12 bp). E9 haplotype of anchovies were found largely in inshore waters and also in offshore waters, which was regarded as the major source in Korean waters (58.3%). However, E26, E27, E28, and E29 haplotypes were found in westsouthern (locality 10, four among 7). Phylogenetic analysis using PHYLIP was divided into two clades (clade A and B). Most of the haplotypes, excluding E26, E27, E28, and E29, were strongly supported by bootstrap analysis (>75%), whereas the relationship between clade A and B was weakly supported by bootstrap analysis (51%). High levels of genetic diversity were found; haplotype diversity (H)=0.75-1.00, and nucleotide diversity $({\pi})=0.015-0.0244$. Analysis of $F_{ST}$ between populations in inshore waters ranged in 0.01-0.05, whereas those of offshore waters ranged in 0.01-0.58. A high gene flow occurred in inshore (Nm=22.61-34.22) and offshore (Nm=11.57-45.67) populations. The distribution of mitochondrial DNA haplotypes between westsouthern and other populations was suggestive of significantly different differentiation ($F_{ST}$=0.20-0.59, p<0.05; d=0.52, p=0.00; ${\phi}=0.02-0.41$, p<0.05). These results suggested that the overall anchovy population in the Korean peninsula caused considerable migration due to the mitochondrial gene flow between inshore and offshore populations to form a genetically homogenous and panmictic structure, although a heterogeneous population was found in this study.

키워드

참고문헌

  1. Aoki, I. and K. Miyashita. 2000. Dispersal of larvae and juveniles of Japanese anchovy Engraulis japonicus in the Kuroshio extention and Kuroshio-Oyashio transition region, western North Pacific Ocean. Fish. Res. 49, 155-164 https://doi.org/10.1016/S0165-7836(00)00197-1
  2. Asahida, T., T. Kobayashi, K. Saitoh and I. Nakayama. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish. Sci. 62, 727-730 https://doi.org/10.2331/fishsci.62.727
  3. Bembo, D. G., G. R. Carvalho, N. Cingolani and T. J. Pitcher. 1996. Electrophoretic analysis of stock structure in Northern Mediterranean anchovies, Engraulis encrasicolus. ICES J. Mar. Sci. 53, 115-128 https://doi.org/10.1006/jmsc.1996.0011
  4. Bembo, D. G., G. R. Carvalho, M. Snow, N. Cingolani and T. J. Pitcher. 1995.. Stock discrimination among European anchovies, Engraulis encrasicolus, by means of PCR-amplified mitochondria DNA analysis. Fish. Bull. 75, 31-40
  5. Borsa, P. 2002. Allozyme, mitochondria-DNA, and morphometric variability indicate cryptic species of anchovy (Engraulis encrasicolus). Bio. J. Linn. Soc. 75, 261-270
  6. Choi, S. G., J. Y. Kim, S. S. Kim, Y. M. Choi and K. H. Choi. 2001. Biomass estimation of anchovy (Engraulis japonicus) by acoustic and trawl surveys during spring season in the southern Korean waters. J. Kor. Soc. Fish. Res. 4, 20-29
  7. Excoffier, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491
  8. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) ver. 3.5c. Department of Genetics, University of Washington, Seattle
  9. Fonda-Umani, S., P. Franco, E. Ghirardelli and A. Malej. 1992. Outline of oceanography and the plankton of the Adriatic Sea, pp. 347-365, In Colombo, G (ed.), Marine eutrophication and population dynamics, Olsen, Denmark
  10. Funamoto, T. and I. Aoki. 2002. Reproductive ecology of Japanese anchovy off the Pacific coast of eastern Honshu, Japan. J. Fish Biol. 60, 154-169 https://doi.org/10.1111/j.1095-8649.2002.tb02395.x
  11. Funamoto, T., I. Aoki, I. and Y. Wada. 2004. Reproductive characteristics of Japanese anchovy, Engraulis japonicus, in two bays of Japan. Fish. Res. 70, 71-81 https://doi.org/10.1016/j.fishres.2004.06.017
  12. Grant, W. S. 1985. Biochemical genetic stock structure of the southern African anchovy, Engraulis capensis Gilchrist. J. Fish Biol. 27, 23-29 https://doi.org/10.1111/j.1095-8649.1985.tb04006.x
  13. Grant, W. S. and B. W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Heredity 89, 415-426 https://doi.org/10.1093/jhered/89.5.415
  14. Grant, W. S. and F. M. Utter. 1984. Biochemical population genetics of Pacific herring (Clupea pallasi). Can. J. Fish. Aqua. Sci. 41, 856-864 https://doi.org/10.1139/f84-102
  15. Hedgecock, D., E. S. Hutchison, G. Li, F. L. Sly and K. Nelson. 1989. Genetic and morphometric varation in the Pacific sardine, Sardinops sagax caerulea: comparisons and contrasts with historical data and with variability in the northern anchovy, Engraulis mordax. Fish. Bull. 87, 653-671
  16. Hellberg, M. E., R. S. Burton, J. E. Neigel and S. R. Palumbi. 2002. Genetic assessment of connectivity among marine populations. Bull. Mar. Sci. 70, 273-290
  17. Holsinger, K. E. and R. J. Mason-Gamer. 1996. Hierarchical analysis of nucleotide diversity in geographically structured populations. Genetics 142, 629-639
  18. Inoue, J. G., M. Miya, K. Tsukamoto and M. Nishida. 2001. Complete mitochondrial DNA sequence of the Japanese anchovy Engraulis japonicus. Fish. Sci. 67, 828-835 https://doi.org/10.1046/j.1444-2906.2001.00329.x
  19. Kim, J. Y. 1983. Distribution of anchovy eggs and larvae off the western and southern coasts of Korea. J. Kor. Fish. Soc. 16, 401-409
  20. Kim, J. Y., E. S. Cho and W. J. Kim. 2004. Population genetic structure of Japanese anchovy (Engralus japonicus) in Korean waters based on mitochondrial 12S ribosomal RNA gene sequence. J. Life Sci. 14, 938-950 https://doi.org/10.5352/JLS.2004.14.6.938
  21. Kim, J. Y. and Y. M. Choi. 1988. Vertical distribution of anchovy, Engraulis japonica eggs and larvae. J. Kor. Fish. Soc. 21, 139-144
  22. Kim, J. Y. and Y. J. Kang. 1992. Spawning ecology of anchovy, Engraulis japonica, in the southern waters of Korea. J. Kor. Fish. Soc. 25, 331-340
  23. Kim, J. Y., Y. S. Kang, H. J. Oh, Y. S. Suh and J. D. Hwang. 2005b. Spatial distribution of early life stages of anchovy (Engraulis japonicus) and hairtail (Trichiurus lepturus) and their relationship with oceanographic features of the East China during the 1997-1998 El Nino event. Est. Coa. Shelf Sci. 63, 13-21 https://doi.org/10.1016/j.ecss.2004.10.002
  24. Kim, J. Y., N. C. Lo and J. I. Kim. 2005a. Correction factors for quantitative analysis of anchovy eggs and larval stages from the southern waters of Korea. OSJ 40, 11-16 https://doi.org/10.1007/BF03023461
  25. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 116, 111-120
  26. Lee, M. A. and K. T. Lee. 1996. The larval anchovy (Engraulis japonicus) fishery in relation to the environmental factors in coastal waters of Fangliao, Taiwan. Fish. Res. 26, 37-48 https://doi.org/10.1016/0165-7836(95)00412-2
  27. Magoulas, A., N. Tsimenides and E. Zouros. 1996. Mitochondria DNA phylogeny and the reconstruction of population history of a species: the case of European anchovy (Engraulis encrasicolus). Mol. Biol. Evol. 13, 178-190 https://doi.org/10.1093/oxfordjournals.molbev.a025554
  28. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia Univ. Press, New York, NY, 512 pp
  29. Palumbi, S. R. 1994. Genetic divergence, reproductive isolation, and marine speciation. Ann. Rev. Ecol. and Syst. 25, 547-572 https://doi.org/10.1146/annurev.es.25.110194.002555
  30. Palumbi, S. R., G. Grabowsk, T. Duda, L. Geyer and N. Tachino. 1997. Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51, 1506-1517 https://doi.org/10.2307/2411203
  31. Pertierra, J. P. 1992. Fisheries biology of the anchovy (Engraulis encrasicolus) in the Catalan coast. Ph.D. Thesis,Universitat Politecnica de Catalunya, Spain, 281 pp
  32. Reichow, D. and M. J. Smith. 2001. Microsatellites reveal high levels of gene flow among populations of the California squid Loligo opalescens. Mol. Ecol. 10, 1101-1109 https://doi.org/10.1046/j.1365-294X.2001.01257.x
  33. Schneider, S., J. M. Kueffer, D. Roessli and L. Excoffier. 1996. Arlequin: a software package for population genetics. Genetics and Biometry Lab., Department of Anthropology, University of Geneva
  34. Smith, P. J. and Y. Fujio. 1982. Genetic variation in marine teleosts: high variability in habitat specialists and low variability in habitat generalists. Mar. Biol. 69, 7-20 https://doi.org/10.1007/BF00396955
  35. Spanakis, E., N. Tsimenides and E. Zouros. 1989. Genetic differences between populations of sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, in the Aegean and Ionina seas. J. Fish Biol. 35, 417-437 https://doi.org/10.1111/j.1095-8649.1989.tb02993.x
  36. Thomson, J. D., D. G. Higgins and T. J. Gibson. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalities and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  37. Tudela, S., J. L. Garcia-Marin and C. Pla. 1999. Genetic structure of the European anchovy, Engraulis encrasicolus, in the north-west Mediterranean. J. Exp. Mar. Ecol. 234, 95-109 https://doi.org/10.1016/S0022-0981(98)00142-7
  38. Vichi, M., M. Zavatarelli and N. Pinardi. 1998. Seasonal modulation of microbially mediated carbon fluxex in the northern Adriatic Sea. Fish. Oceano. 75, 182-190
  39. Wright, S. 1978. Variability within and among natural populations. In Evolution and the genetics of populations, vol. 4, University of Chicago Press, Chicago, IL
  40. Yu, H. T., Y. J. Lee, S. W. Huang and T. W. Chiu. (2002). Genetic analysis of the populations of Japanese anchovy (Engrauidae: Engraulis japonicus) using microsatellite DNA. Mar. Biotechnol. 4, 471-479 https://doi.org/10.1007/s10126-002-0035-8
  41. Zaho, X., J. Hamre, F. Li, X. Jin and Q. Tang. 2003. Recruitment, sustainable yield and possible ecological consequences of the sharp decline of the anchovy (Engraulis japonicus) stock in the Yellow Sea in the 1990s. Fish. Oceano. 12, 495-501 https://doi.org/10.1046/j.1365-2419.2003.00262.x

피인용 문헌

  1. DNA Analysis of mtDNA COI Gene in the Sharp-toothed Eel (Muraenesox cinereus Forskal) from Yeosu, Jinhae, Jeju, Goseoung, Jangheung and Haenam Populations in Korea Using PCR-aided RFLP vol.20, pp.4, 2011, https://doi.org/10.5322/JES.2011.20.4.551
  2. The Pulation Structure of the Pacific Cod (Gadus macrocephalus Tilesius) Based on Mitochondrial DNA Sequences vol.20, pp.3, 2010, https://doi.org/10.5352/JLS.2010.20.3.336
  3. Genetic Differences between Wild and Cultured Populations in Olive Flounder in Korea Based on Mitochondrial DNA Analysis vol.20, pp.4, 2010, https://doi.org/10.5352/JLS.2010.20.4.614
  4. Genetic Diversity in the mtDNA control region and population structure of Chrysichthys nigrodigitatus from selected Nigerian rivers: Implications for conservation and aquaculture vol.24, pp.2, 2016, https://doi.org/10.1515/aopf-2016-0010
  5. Development of gene-associated single nucleotide polymorphisms for Japanese anchovy Engraulis japonicus through cross-species amplification vol.84, pp.1, 2018, https://doi.org/10.1007/s12562-017-1134-9