DOI QR코드

DOI QR Code

Calretinin-Containing Neurons in the Deeper Layers of the Hamster Superior Colliculus

햄스터 상구의 deeper layers에서 calretinin이 함유 신경세포

  • Kim, Ye-Eun (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Jae-Sik (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Hye-Hyun (Department of Biology, College of Natural Sciences, Kyungpook National University,Agrobiotechnology Education Center, NURI) ;
  • Yeo, Jin-Yeon (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Jeon, Chang-Jin (Department of Biology, College of Natural Sciences, Kyungpook National University)
  • 김예은 (경북대학교 자연과학대학 생물학과) ;
  • 최재식 (경북대학교 자연과학대학 생물학과) ;
  • 김혜현 (경북대학교 자연과학대학 생물학과,경북대학교 생물건강 농업생명 융합형 인재양성 사업단) ;
  • 여지연 (경북대학교 자연과학대학 생물학과) ;
  • 전창진 (경북대학교 자연과학대학 생물학과)
  • Published : 2006.08.30

Abstract

Calcium-binding protein calretinin is thought to play important roles in calcium buffering. Recently, we reported on the distribution, morphology of calretinin-immunoreactive (IR) neurons and the effects of eye enucleation on the immunoreactivity of calretinin in the superficial layers of the hamster superior colliculus (SC). In the present study, we describe the distributions and types of labeled cells and effects of enucleation in the deeper layers by immunocytochemistry. We also compare this labeling to that of GABA, the major inhibitory neurotransmitter in the central nervous system. In contrast to the superficial layers, the deeper layers contained many calretinin-IR neurons which formed two tiers. The first tier, which was very distinctive, was found within the intermediate gray layer. The second tier was found in the deep gray layer. Labeled neurons varied dramatically in morphology and included vertical fusiform, stellate, round/oval, and horizontal neurons. In contrast to the superficial layers, enucleation appeared to have no effect on the distribution of calretinin immunoreactivity in the deeper layers. Two-color immunofluorescence revealed that none of calretinin-IR neurons were labeled with an antibody to GABA. The present results demonstrate that calretinin identifies unique neuronal sublaminar organizations in the hamster SC. The present results also demonstrate that none of the calretinin-IR neurons in the hamster SC is GABAergic interneurons. As many calretinin-IR cells are GABAergic interneurons in most other brain areas, this phenomenon in hamster SC is exceptional.

칼슘 결합 단백질 calretinin은 칼슘의 완충작용에 중요한 역할을 한다고 알려져 있다. 최근에 우리는 햄스터 상구의 superficial layer에서 calretinin과 면역반응(immunoreactive)을 일으키는 신경세포의 형태, 분포와 안구적출 후 calretinin 면역반응의 영향에 대해 보고한 바 있다. 본 연구에서는, 상구의 deeper layer에서 면역세포화학 방법을 이용하여 면역표지 된 세포의 분포와 유형 그리고 안구적출 후 변화의 양상을 기술한다. 또한 중추 신경계에서 주요 억제성 신경전달물질인 GABA를 사용하여 calretinin 면역표지 된 세포와 비교하였다. Superficial layer와 비교하여, deeper layer는 calretinin 면역 반응을 일으키는 많은 신경세포들이 분포한다. 이 신경세포들은 두 층을 형성하며, 그 중 첫 번째 층은 intermediate gray layer에서 뚜렷한 층 구조를 나타내었다. 두 번째 층은 deep gray layer에서 발견되었다. 면역표지 된 신경세포는 형태학적으로 매우 다양하며, 수직 방추모양, 성상, 둥근/타원형 그리고 수평 신경세포를 포함한다. Superficial layer와 비교하여, 안구적출은 deeper layer에서 calretinin 면역반응의 분포에 영향이 없는 것으로 보여진다. 두 가지 색을 이용한 면역 형광법은 calretinin 면역반응 신경세포들이 하나도 GABA항체와 함께 표지 되지 않는 것을 보여준다. 본 연구 결과는 햄스터 상구에서 calretinin 함유 신경세포는 특이한 sublaminar 구조를 이루고 있는 것을 보여준다. 본 연구 결과는 또한 햄스터 상구에서 calretinin 면역 반응 신경세포들은 GABAergic interneuron이 하나도 없는 것을 증명한다. 많은 calretinin 면역 반응 세포들은 대부분 뇌의 다른 부분에서는 GABAergic interneuron 인데 비해, 햄스터 상구에서의 본 연구 현상은 예외적이다.

Keywords

References

  1. Arai, M., R. Arai, K. Sasamoto, K. Kani, T. Maeda, S. Deura and D. M. Jacobowitz. 1993. Appearance of calretinin- immunoreactive neurons in the upper layers of the rat superior colliculus after eye enucleation. Brain Res. 613, 341-346 https://doi.org/10.1016/0006-8993(93)90924-C
  2. Baimbridge, K. G., M. Celio and J. H. Rogers. 1992. Calcium-binding proteins in the nervous system. Trends Neurosci. 15, 303-307 https://doi.org/10.1016/0166-2236(92)90081-I
  3. Behan, M., A. Jourdain and G. M. Bray. 1992. Calcium binding protein (calbindin D28k) immunoreactivity in the hamster superior colliculus: ultrastructure and lack of co-localization with GABA. Brain Res. 89, 115-124
  4. Cork, R. J., S. Z. Baber and R. R. Mize. 1998. CalbindinD28k- and parvalbumin-immunoreactive neurons form complementary sublaminae in the rat superior colliculus. J. Comp. Neurol. 394, 205-217 https://doi.org/10.1002/(SICI)1096-9861(19980504)394:2<205::AID-CNE5>3.0.CO;2-6
  5. Gobersztejn, F. and L. R. G. Britto. 1996. Calretinin in the mouse superior colliculus originates from retinal ganglion cells. Braz. J. Med. Biol. Res. 29, 1507-1511
  6. Gonchar, Y. and A. Burkhalter. 1997. Differential subcellular localization of forward and feedback interareal inputs to parvalbumin expressing GABAergic neurons in rat visual cortex. J. Comp. Neurol. 406, 346-360 https://doi.org/10.1002/(SICI)1096-9861(19990412)406:3<346::AID-CNE4>3.0.CO;2-E
  7. Grantyn, R. 1988. Gaze control through superior colliculus: structure and function. Rev. Oculomot. Res. 2.273-333
  8. Harting, J. K. and R. W. Guillery. 1976. Organization of retinocollicular pathways in the cat. J. Comp. Neurol. 166, 133-144 https://doi.org/10.1002/cne.901660202
  9. Harting, J. K. 2004. Puffs and patches: A brief chronological review. pp. 83-105, In Hall, W. C. and A. Moschovakis (eds.), The superior colliculus : new approaches for studying sensorimotor integration. CRC press LLC, Florida
  10. Heizmann, C. W., J. Röhrenbeck and W. Kamphuis. 1990. Parvalbumin, molecular and functional aspects. Adv. Exp. Med. Biol. 29, 57-66
  11. Hong, S. K., J. Y. Kim and C. J. Jeon. 2002. Immunocytochemical localization of calretinin in the superficial layers of the cat superior colliculus. Neorosci. Res. 44, 325-335 https://doi.org/10.1016/S0168-0102(02)00154-2
  12. Huerta, M. F. and J. K. Harting. 1984. The mammalian superior colliculus: studies of its morphology and connections. pp 687-772. In Vanegas, H. (ed.), The comparative neurology of the optic tectum. Plennum press, New York
  13. Jeon, C. J., J. Y. Sung and S. K. Hong. 2003. Distribution and morphology of calretinin-immunoreactive neurons in the intermediate and deep layers of cat superior colliculus. Korean J. Biol. Sci. 7, 151-157 https://doi.org/10.1080/12265071.2003.9647698
  14. Jeon, C. J., J. K. Pyun and H. W. Yang. 1998. Calretinin and calbindin D28K immunoreactivity in the superficial layers of the rabbit superior colliculus. Neuroreport 9, 3847-3852 https://doi.org/10.1097/00001756-199812010-00015
  15. Jeon, M. H. and C. J. Jeon. 1998. Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci. Res. 32, 75-84 https://doi.org/10.1016/S0168-0102(98)00070-4
  16. Kang, Y. S., J. H. Kong, W. M. Park, O. J. Kwon, J. E. Lee, S. Y. Kim and C. J. Jeon. 2002. Morphology of calretinin- immunoreactive neurons in the superficial layers of hamster superior colliculus after enucleation: lack of co-localization with GABA. Mol. Cells 14, 361-336
  17. Kang, Y. S., W. M. Park, J. K. Lim, S. Y. Kim and C. J. Jeon. 2002. Changes of calretinin, calbindin D28K and parvalbumin immunoreactive neurons in the superficial layers of the hamster superior colliculus following monocular enucleation. Neurosci. Lett. 330, 104-108 https://doi.org/10.1016/S0304-3940(02)00723-1
  18. Leuba, G. and K. Saini. 1996. Calcium- binding proteins immunoreactivity in the human subcortical and cortical visual structures. Vis. Neurosci. 13, 997-1009 https://doi.org/10.1017/S0952523800007665
  19. Meskenaite, V. 1997. Calretinin-immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, macaca fascicularis. J. Comp. Neurol. 379, 113-132
  20. Mize, R. R., C. J. Jeon, G. D. Butler, Q. Luo and P. C. Emson. 1991. The calcium binding protein calbindin-D28K reveals subpopulations of projection and interneurons in the cat superior colliculus. J. Comp. Neurol. 307, 417-436 https://doi.org/10.1002/cne.903070307
  21. Mize, R. R., Q, Luo, G. Butler, C. J. Jeon and B. Nabors. 1992. The calcium binding proteins parvalbumin and calbindin- D28K form complementary patterns in the cat superior colliculus. J. Comp. Neurol. 320, 243-256 https://doi.org/10.1002/cne.903200208
  22. Rogers, J. H. 1987. Calretinin: A gene for a novel calcium- binding protein expressed principally in neurons. J. Cell Biol. 105, 1343-1353 https://doi.org/10.1083/jcb.105.3.1343
  23. Rogers, J. H., M. Khan and J. H. Ellis. 1990. Calretinin and other calcium binding proteins in the nervous system. Adv. Exp. Med. Biol. 269, 195-203 https://doi.org/10.1007/978-1-4684-5754-4_32
  24. Rogers, J. H. and A. Resibois. 1992. Calretinin and calbindin- D28K in rat brain: patterns of partial co-localization. Neuroscience 51, 843-865 https://doi.org/10.1016/0306-4522(92)90525-7
  25. Schafer, B.W. and C. W. Heizmann. 1996. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. 21, 134-140 https://doi.org/10.1016/0968-0004(96)10020-7