DOI QR코드

DOI QR Code

The Sex Determination Mechanisms in Maize: Cell Death, Cell Protection and Cell Cycle Arrest

옥수수 성 결정 메커니즘: 세포 사멸, 세포 방어, 세포주기 멈춤

  • Kim, Jong-Cheol (Environmental Biotechnology National Core Research Center Gyeongsang National University) ;
  • Lee, Kyun-Oh (Environmental Biotechnology National Core Research Center Gyeongsang National University)
  • 김종철 (경상대학교 환경생명과학 국가핵심연구센터) ;
  • 이균오 (경상대학교 환경생명과학 국가핵심연구센터)
  • Published : 2006.07.31

Abstract

Maize (Zea mays L.) is a monoecious plant, which separates male (tassel) and female (ear) floret that evolved into increasing heterogeneity. In each floret, male or female, bears both one pistil and three stamens primodia before diverged to unisexual state. When diverged to tassel, pistil cell death occurs in the pistil primodium, which is mediated by TASSELSEED genes. In contrast, cell protection occurs in the ear pistil from TASSELSEED-mediated cell death, which is mediated by SILKLESS1 gene. On the other hand, cell cycle arrest occurred for a long time in the ear stamens and then the stamens eventually dye. The cell cycle regulating genes such as CYCLIN B and WEE1 are involved in this process. Furthermore, the temporal and spatial regulation of gibberellin biosynthesis may cause cell cycle block in arresting stamen cells. This review describes the cell death, cell protection, and cell cycle arrest mechanism during maize sex determination process at the molecular, cellular and developmental biology, and genetic levels.

옥수수(Zea mays)는 단성화 식물로서 암꽃과 수꽃이 한 식물체내에 분리되어서 존재하며 수정시 이질성을 높이는 방향으로 진화되었다. 암꽃과 수꽃 각각은 단성화 상태로 분화하기 전에 한 개의 암술과 세 개의 수술 원시세포가 동일하게 형성된다. 옥수수가수꽃으로 분화할 때는 암술 원시세포에서 세포사멸 현상이 일어나는데 이것은 TASSELSEED 유전자들에 의해 매개된다. 이와 대조적으로 암꽃의 암술에서는 TASSELSEED 유전자들에 의한 세포사멸이 억제되는데 여기에는 SILKLESS1 유전자가 관여한다. 한편, 암꽃의 수술에서는 세포주기 멈춤 현상이 오랜 시간 지속되다가 결국에는 수술이 죽게 된다. 이때 세포주기를 조절하는 유전자인 CYCLIN B 와 WEE1 유전자가 이 과정에 참여한다. 이와 더불어, 지베렐린 생합성의 시간적 공간적 조절이 수술의 세포주기 멈춤의 원인이 된다. 본 총설에서는 옥수수의 성 결정 과정 중에 일어나는 세포사멸, 세포 방어, 세포주기 멈춤에 대하여 분자세포 발생 생물학 및 유전학적인 견지에서 고찰하였다.

Keywords

References

  1. Calderon-Urrea, A. 1996. Molecular genetics of the sex determination process in maize, PhD Diss., Yale University, New Haven
  2. Calderon-Urrea, A., and Dellaporta, S. L. 1999. Cell death and cell protection genes determine the fate of pistils in maize. Development 126, 435-441
  3. Cheng, W. H., Endo, A., Zhou, L., Penney, J., Chen, H. C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., 2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723-2743 https://doi.org/10.1105/tpc.006494
  4. Chinkers, M. 2001. Protein phosphatase 5 in signal transduction. Trends Endocrinol. Metab. 12, 28-32 https://doi.org/10.1016/S1043-2760(00)00335-0
  5. Coleman, T. R., and Dunphy, W. G. 1994. Cdc2 regulatory factors. Curr. Opin. Cell Biol. 6, 877-882 https://doi.org/10.1016/0955-0674(94)90060-4
  6. Dellaporta, S. L., and Calderon-Urrea, A. 1993. Sex determination in flowering plants. Plant Cell 5, 1241-1251 https://doi.org/10.1105/tpc.5.10.1241
  7. Dellaporta, S. L., and Calderon-Urrea, A. 1995. The sex determination process in maize. Science 266, 1501-1505 https://doi.org/10.1126/science.7985019
  8. DeLong, A., Calderon-Urrea, A., and Dellaporta, S. L. 1993. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74, 757-768 https://doi.org/10.1016/0092-8674(93)90522-R
  9. Emerson, R. A. 1920. Heritable Characters of Maize II. Pistillated Flowered Maize Plants. J. Hered. 11, 65-76 https://doi.org/10.1093/oxfordjournals.jhered.a101971
  10. Emerson, R. A. 1932. The present status of maize genetics. Sixth Int Congress Genet. Proc. 1, 141-152
  11. Emerson, R. A., and Emerson, S. H. 1922. Genetic interrelations of two andromonoecious types of maize, dwarf and anther ear. Genetics 7, 203-236
  12. Fujioka, S., Yamane, H., Spray, C. R., Katsumi, M., Phinney, B. O., Gaskin, P., MacMillan, J., and Takahashi, N. 1988. The dominant non-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc. Natl. Acad. Sci. 85, 9031-9035
  13. Harberd, N., and Freeling, M. 1989. Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics 121, 827-838
  14. Heslop-Harrison, J. 1961. The experimental control of sexuality and inflorescence structure in Zea mays L. Proceedings of the Linnean Society of London 172, 108-123
  15. Huelsen, W. A., and Gillis, M. C. 1929. Inheritance of kernel arrangement in sweet corn. University of Illinois Agricultural Experiment Station 320, 299-336
  16. Irish, E. E., Langdale, J. A., and Nelson, T. M. 1994. Interactions between Tasselseeds and other sex determining genes in Maize. Developmental Genetics 15, 155-171 https://doi.org/10.1002/dvg.1020150206
  17. Irish, E. I. 1997. Experimental analysis of tassel development in maize mutant Tassel Seed 6. Plant Physiology 114, 817-825 https://doi.org/10.1104/pp.114.3.817
  18. Lebel-Hardenack, S., Ye, D., Koutnikova, H., Saedler, H., and Grant, S. R. 1997. Conserved expression of a TASSELSEED2 homolog in the tapetum of the dioecious Silene latifolia and Arabidopsis thaliana. Plant J. 12, 515-526 https://doi.org/10.1046/j.1365-313X.1997.00515.x
  19. Li, D., Blakey, C. A., Dewald, C., and Dellaporta, S. L. 1997. Evidence for a common sex determination mechanism for pistil abortion in maize and in its wild relative Tripsacum. Proc. Natl. Acad. Sci. U S A 94, 4217-4222
  20. McSteen, P., Laudencia-Chingcuanco, D., and Colasanti, J. 2000. A floret by any other name: control of meristem identity in maize. Trends Plant Sci. 5, 61-66 https://doi.org/10.1016/S1360-1385(99)01541-1
  21. Morita, K., Saitoh, M., Tobiume, K., Matsuura, H., Enomoto, S., Nishitoh, H., and Ichijo, H. 2001. Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. Embo J. 20, 6028-6036 https://doi.org/10.1093/emboj/20.21.6028
  22. Nickerson, N. H., and Dale, E. E. 1955. Tassel modifications in Zea mays. Annals of the Missouri Botanical Garden 42, 195-211 https://doi.org/10.2307/2394655
  23. Peng, J., Richards, D. E., Hartley, N. M., Murphy, G. P., Devos, K. M., Flintham, J. E., Beales, J., Fish, L. J., Worland, A. J., Pelica, F., 1999. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256-261 https://doi.org/10.1038/22307
  24. Phinney, B. O. 1956. Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc. Natl. Acad. Sci. 42, 185-189
  25. Phinney, B. O. 1961. Dwarfing genes in Zea mays and their relation to the Gibberellins, pp. 489-501. In R. M. Klein, (ed.), Plant growth regulation, Iowa State University Press, Ames
  26. Richey, F., and Sprague, G. 1932. Some factors affecting the reversal of sex expression in the tassel of maize. American Naturalist 66, 433-443 https://doi.org/10.1086/280449
  27. Rossmann, M. G., Liljas, A., Branden, C. I., and Banaszak, L. J. 1976. The Enzymes, pp. 62-102. In P. D. Boyer, (eds.), Academic Press, New York
  28. Veit, B., Greene, B., Lowe, B., Mathern, J., Sinha, N., Vollbrecht, E., R., W., and Hake, S. 1991. Genetic approaches to inflorescence and leaf development in maize. Development Supplement 1, 105-111
  29. Veit, B., Schmidt, R. J., Hake, S., and Yanofsky, M. F. 1993. Maize floral development: new genes and old mutants. Plant Cell 5, 1205-1215 https://doi.org/10.1105/tpc.5.10.1205
  30. Yampolsky, C., and Yampolsky, H. 1922. Distribution of sex forms in the phanerogamic flora. Bibliotheca Genet. 3, 34-45
  31. Yin, S.-J., Vagelopoulos, N., Lundquist, G., and Jornvall, H. 1991. Pseudomonas 3beta-hydroxysteroid dehydrogenase: primary structure and relationships to other steroid dehydrogenases. Eur. J. Biochem 197, 359-365 https://doi.org/10.1111/j.1432-1033.1991.tb15919.x