R-(-)-TNPA, a Dopaminergic $D_2$ Receptor Agonist, Inhibits Catecholamine Release from the Rat Adrenal Medulla

  • Hong, Soon-Pyo (Departments of Internal Medicine (Cardiology), College of Medicine, Chosun University) ;
  • Seo, Hong-Joo (Department of Chest Surgery, College of Medicine, Chosun University) ;
  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2006.10.01

Abstract

The aim of the present study was to investigate the effects of R-(-)-2,10,11-trihydroxy-N-propylnoraporphine [R-(-)-TNPA], a selective agonist of dopaminergic $D_2$ receptor and S(-)-raclopride, a selective antagonist of dopaminergic $D_2$ receptor, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused model of the rat adrenal gland, and also to establish its mechanism of action. R-(-)-TNPA $(10{\sim}100\;{\mu}M)$ perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100\;{\mu}M)$ and McN-A-343 $(100\;{\mu}M)$. R-(-)-TNPA itself did also fail to affect basal CA output. Also, in adrenal glands loaded with R-(-)-TNPA $(30\;{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$, an activator of L-type $Ca^2+$ channels and cyclopiazonic acid $(10\;{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were also inhibited. However, S(-)-raclopride $(1{\sim}10\;{\mu}M)$, given into an adrenal vein for 60 min, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP and McN-A-343 only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, S(-)-raclopride $(3.0\;{\mu}M)$ in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644 and cyclopiazonic acid only for the first period (4 min). However, after simultaneous perfusion of R-(-)-TNP A $(30\;{\mu}M)$ and S(-)-raclopride $(3.0\;{\mu}M)$, the inhibitory responses of R(-)-TNPA $(30\;{\mu}M)$ on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Taken together, these experimental results suggest that R-(-)-TNPA greatly inhibits the CA secretion from the perfused rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization, but S(-)-raclopride rather enhances the CA release by them. It seems that this inhibitory of R-(-)-TNPA may be mediated by stimulation of inhibitory dopaminergic $D_2$ receptors located on the rat adrenomedullary chromaffin cells, while the facilitatory effect of S(-)-raclopride is due to the blockade of dopaminergic $D_2$ receptors, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that dopaminergic $D_2$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

Keywords

References

  1. Albillos A, Abad F, Garcia AG. Cross-talk between M2 muscarinic and D1 dopamine receptors in the cat adrenal medulla. Biochem Biophys Res Commun 183: 1019-1024, 1992, https://doi.org/10.1016/S0006-291X(05)80292-X
  2. Amenta F, Ricci A. Autoradiographic localization of dopamine $D_2$ - like receptors in the rat adrenal gland. Clin Exp Hypertens 17: 669-688, 1995 https://doi.org/10.3109/10641969509037415
  3. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxidetrihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360-375, 1962
  4. Artalejo AR, Ariano MA, Perlman RL, Fox AP. Activation of facilitation calcium channels in chromaffin cells by $D_1$ dopamine receptors through a AMP/protein Kinase A-dependent mechanism. Nature 348: 239-242, 1990 https://doi.org/10.1038/348239a0
  5. Artalejo AR, Garcia AG, Montiel C, Sanchez-Garcia P. A dopaminergic receptor modulates catecholamine release from the cat adrenal gland. J Physiol 362: 359-368, 1985 https://doi.org/10.1113/jphysiol.1985.sp015683
  6. Bigornia L, Allen CN, Jan CR, Lyon RA, Titeler M, Schneider AS. $D_2$ dopamine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells. J Pharmacol Expt Ther 252: 586-592, 1990
  7. Bigornia L, Suozzo M, Ryan KA, Napp D, Schneider AS. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release. J Neurochem 51: 999-1006, 1988 https://doi.org/10.1111/j.1471-4159.1988.tb03060.x
  8. Challis RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083-1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  9. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cyrosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429-434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  10. Choi DH. The role of dopaminergic $D_1$ receptors in catecholamine release from the rat adrenal medulla. Ph.D. Thesis Chosun University Graduate School, 2004
  11. Chu E, Chu TC, Potter DE. Potential sites of action of TNPA: a dopamine-2 receptor agonist. Exp Eye Res 69: 611-616, 1999 https://doi.org/10.1006/exer.1999.0734
  12. Collet AR, Story DF. Is catecholamine release from the rabbit adrenal gland subject to regulation through dopamine receptors or beta-adrenoceptors- Clin Exp Pharmacol Physiol 9: 436, 1982a
  13. Collet AR, Story DF. Release of 3H-adrenaline from an isolated intact preparation of the rabbit adrenal gland: no evidence for release modulatory alpha-adrenoceptors. J Auton Pharmacol 2: 25-34, 1982b https://doi.org/10.1111/j.1474-8673.1982.tb00467.x
  14. Cooper DMF, Bier-Laning CM, Halford MK, Ahlijanian MK, Zahniser NR. Dopamine acting through $D_2$ receptors inhibits rat striatal adenylate cyclase by a GTP-dependent process. Mol Pharmacol 29: 113-119, 1986
  15. Dahmer MK, Senogles SE. Doparminergic inhibition of catecholamine secretion from chromaffin cells: evidence that inhibition is mediated by $D_4$ and D5 dopamine receptors. J Neurochem 66: 222-232, 1996a https://doi.org/10.1046/j.1471-4159.1996.66010222.x
  16. Dahmer MK, Senogles SE. Differential inhibition of secretagoguestimulated sodium uptake in adrenal chromaffin cells by activation of $D_4$ and $D_5$ dopamine receptors. J Neurochem 67: 1960- 1964, 1996b https://doi.org/10.1046/j.1471-4159.1996.67051960.x
  17. Damase-Michel C, Montastruc JL, Geelen G, Saint-Blanquat GD, Tran MA. Effect of quinpirole a specific dopamine DA2 receptor agonist on the sympathoadrenal system in dogs. J Pharmacol Expt Ther 252: 770-777, 1990
  18. Damase-Michel C, Montastruc JL, Tran MA. Dopaminergic inhibition of catecholamine secretion from adrenal medulla is mediated by $D_2$-like but not D1-like dopamine receptors. Clin Expt Pharmacol Physiol 26(Suppl): S67-S68, 1999
  19. De Vliefer TA, Lodder JC, Werkman TR, Stoof JC. Dopamine receptor stimulation has multiple effects on ionic currents in neuroendocrine cells of the pond snail Lymnaea stagnalis. (Abstr) Neuroscience Lett 22(Suppl): S418, 1985
  20. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Ihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69-71, 1984 https://doi.org/10.1038/309069a0
  21. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem Pharmacol 38: 3995-4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  22. Gonzales MC, Artalejo AR, Montiel C, Hervas PP, Garcia AG. Characterization of a dopaminergic receptor that modulates adrenomedullary catecholamine release. J Neurochem 47: 382- 388, 1986 https://doi.org/10.1111/j.1471-4159.1986.tb04513.x
  23. Hammer R, Giachetti A. Muscarinic receptor subtypes: $M_1 $ and $M_2 $ biochemical and functional characterization. Life Sci 31: 2992- 2998, 1982
  24. Huettl P, Gerhardt GA, Browning MD, Masserano JM. Effects of dopamine receptor agonists and antagonists on catecholamine release in bovine chromaffin cells. J Pharmacol Expt Ther 257: 567-574, 1991
  25. Kujacic M, Carlsson A. Evidence for an increased catecholamine synthesis in rat adrenal glands following stimulation of peripheral dopamine receptors. J Neural Transm Gen Sect 92: 73-79, 1993 https://doi.org/10.1007/BF01244867
  26. Kujacic M, Carlsson A. In vivo activity of tyrosine hydroxylase in rat adrenal glands following administration of quinpirole and dopamine. Eur J Pharmacol 278: 9-15, 1995 https://doi.org/10.1016/0014-2999(95)00092-Y
  27. Kujacic M, Svensson K, Lofberg L, Carlsson A. Carlsson, Acute changes in dopamine levels in rat adrenal gland after administration of dopamine receptor agonists and antagonists. Eur J Pharmacol 177: 163-170, 1990 https://doi.org/10.1016/0014-2999(90)90266-9
  28. Kujacic M, Svensson K, Lofberg L, Carlsson A. Dopamine receptors, controlling dopamine levels in rat adrenal glands-comparison with central dopaminergic autoreceptors. J Neural Transm Gen Sect 84: 195-209, 1991 https://doi.org/10.1007/BF01244970
  29. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15: 115-125, 1992 https://doi.org/10.1007/BF02974085
  30. Lim DY, Kim KH, Choi CH, Yoo HJ, Choi DJ, Lee EH. Studies on secretion of catecholamines evoked by metolclopramide of the rat adrenal gland. Korean J Pharmacol 25: 31-42, 1989
  31. Lim DY, Yoon JK, Moon B. Interrelationship between dopaminergic receptors and catecholamine secretion from the rat adrenal gland. Korean J Pharmacol 30: 87-100, 1994
  32. Lyon RA, Titeler M, Bigornia L, Schneider AS. $D_2$ dopamine receptors on bovine chromaffin cell membranes: identification and characterization by $[^3H]$ N-methylspiperone binding. J Neurochem 48: 631-635, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb04139.x
  33. Malgaroli A, Vallar L, Elahi FR, Pozzan T, Spada A, Meldolesi J. 'Dopamine inhibits cytosolic $Ca^{2+}$ increases in rat lactotroph cells. J Biol Chem 262: 13920-13927, 1987
  34. Mannelli M, Lanzillotti R, Ianni L, Pupilli C, Serio M. Dopaminergic modulation of human adrenal medulla: indirect evidence for the involvement of DA-2 receptors located on chromaffin cells. J Auton Pharmacol 10(Suppl 1): S79-S84, 1990 https://doi.org/10.1111/j.1474-8673.1990.tb00232.x
  35. Memo M, Carboni E, Trabucchi M, Carruba MO, Spano PF. Dopamine inhibition of neurotensin-induced increase in $Ca^{2+}$ influx intro rat pituitary cells. Brain Res 347: 253-257, 1985 https://doi.org/10.1016/0006-8993(85)90184-2
  36. Montastruc JL, Gaillard G, Rascol O, Tran MA, Montastruc P. Effect of apomorphine on adrenal medullary catecholamine levels. Fundam Clin Pharmacol 3: 665-670, 1989 https://doi.org/10.1111/j.1472-8206.1989.tb00467.x
  37. Montiel C, Artalejo AR, Bermejo PM, Sanchez-Garcia P. A dopaminergic receptor in adrenal medulla as a possible site of action for the droperidol-evoked hypertensive response. Anesthesiology 65: 474-479, 1986 https://doi.org/10.1097/00000542-198611000-00004
  38. Quik M, Bergeron L, Mount H, Philte J. Dopamine D2 receptor binding in adrenal medulla: charadcterization using $[^3H]$ spiperone. Biochem Pharmacol 36: 3707-3713, 1987 https://doi.org/10.1016/0006-2952(87)90024-4
  39. Schoors DF, Vauquelin GP, De Vos H, Smets G, Velkeniers B, Vanhaelst L, Dupont AG. Identification of a $D_1$ dopamine receptor, not linked to adenylate cyclase, on lactotroph cells. Br J Pharmacol 103: 1928-1934, 1991 https://doi.org/10.1111/j.1476-5381.1991.tb12354.x
  40. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$ -APase of sarcoplasimc reticulum. J Biol Chem 264: 17816-17823, 1989
  41. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$ -pump, reduces $Ca^{2+}$-dependent $K^+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  42. Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd ed. Speringer-Verlag, New York, p 132, 1987
  43. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463-480, 1981 https://doi.org/10.1113/jphysiol.1981.sp013676