참고문헌
- Attfield, P. V., Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett., 225, 259-263 (1987) https://doi.org/10.1016/0014-5793(87)81170-5
- Baureithel, K. H., Buter, K. B., Engesser, A., Burkard, W., and Schaffner, W., Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species of Hypericum. Pharm. Acta Helvetica, 72, 153-157 (1997) https://doi.org/10.1016/S0031-6865(97)00002-2
- Benaroudj, N., Lee, D. H., and Goldberg, A. L., Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem., 276, 24261-24267 (1987) https://doi.org/10.1074/jbc.M101487200
- Calerone, R. A. and Fonzi, W. A., Virulence factors of Candida albicans. Trends Microbiol., 9, 327-335 (2001) https://doi.org/10.1016/S0966-842X(01)02094-7
- Carlo, G. D., Masclo, N., Izzo, A. A., and Capasso, F., Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sci., 65, 337-353 (1999) https://doi.org/10.1016/S0024-3205(99)00120-4
- Elbein, A. D., Pan, Y. T., Oastuszak, I., and Carroll, D., New insights on trehalose: a multifunctional molecule. Glycobiology, 13, 17-27 (2003) https://doi.org/10.1093/glycob/cwg047
- Gambhir, S. S., Geol, R. K., and Das Gupta, G., Antiinflammatory & anti-ulcerogeinc activity of amentoflavone. Indian J. Med. Res., 85, 689–693 (1987)
- Gil, B., Sanz, M. J., Terencio, M. C., Gunasegaran, R., Paya, M., and Alcaraz, M. J., Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with antiinflammatory activity. Biochem. Pharmacol., 53, 733-740 (1997) https://doi.org/10.1016/S0006-2952(96)00773-3
- Kim, H. K., Son, K. H., Chang, H. W., Kang, S. S., and Kim, H. P., Amentoflavone, a plant biflavone: a new potential antiinflammatory agent. Arch. Pharm. Res., 21, 406–410 (1998) https://doi.org/10.1007/BF02974634
- Kim, H. P., Mani, I., Iversen, L., and Ziboh, V. A., Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase form guinea-pigs. Prostaglandins Leukot. Essent. Fatty Acids., 58, 17-24 (1998) https://doi.org/10.1016/S0952-3278(98)90125-9
- Krauze-Baranowska, M., Cisowski, W., Wiwart, M., and Madziar, B., Antifungal biflavones from Cupressocyparis leylandii. Planta Med., 65, 572-573 (1999) https://doi.org/10.1055/s-2006-960828
- Krauze-Baranowska, M. and Wiwart, M., Antifungal activity of biflavones from Taxus baccata and Ginkgo biloba. Z Naturforsch [C]., 58, 65-69 (2003)
- Lee, D. G., Hahm, K.-S., and Shin, S. Y., Structure and fungicidal activity of a synthetic antimicrobial peptide, P8, and its truncated peptides. Biotech. Lett., 26, 337-341 (2004) https://doi.org/10.1023/B:BILE.0000015472.09542.6d
- Lee, D. G., Park, Y., Keon, P. I., Jeong, H. G., Woo, E.-R., and Hanm, K.-S., Influence on the plasma membrane of Candida albicans by HP(2-9)-magainin 2(1-2) hybrid peptide. Biochem. Biophys. Res. Commun. 297, 885-889 (2002) https://doi.org/10.1016/S0006-291X(02)02267-2
- Lee, H. S., Oh, W. K., Kim, B. Y., Ahn, S. C., Kang, D. O., Shin, D. I., Kim, J., Mheen, T. I., and Ahn, J. S., Inhibition of phospholipase C gamma 1 activity by amentoflavone isolated from Selaginella tamariscina. Planta Med., 62, 293- 296 (1996) https://doi.org/10.1055/s-2006-957887
- Lin, L., Kuo, U., and Chou, C., Cytotoxic Biflavonoids from Selaginella delicatula. J. Nat. Prod., 63, 627-630 (2000) https://doi.org/10.1021/np990538m
- Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. L., Huffman, J. H., and Kern, E. R., Antiviral activities of biflavonoids. Planta med., 65, 120-125 (1999) https://doi.org/10.1055/s-1999-13971
- Lobstein-Guth, A., Briancon-Scheid, F., Victoire, C., Haag- Berrurier, M., and Anton, R., Isolation of amentoflavone from Ginkgo biloba. Planta Med., 54, 555-556 (1998)
- Ma, S. C., But, P. P., Ooi, V. E., He, Y. H., Lee, S. H., Lee, S. F., and Lin, R. C., Antiviral amentoflavone from Selaginella sinensis, Biol. Pharm. Bull., 24, 311-312 (2001) https://doi.org/10.1248/bpb.24.311
- Markham, K. R., Sheppard, C., and Geiger, H., 13C NMR studies of some naturally occurring amentoflavone and hinokiflavone biflavonoids. Phytochemistry, 26, 3335-3337 (1987) https://doi.org/10.1016/S0031-9422(00)82499-1
- Matsuoka, S. and Murata, M., Cholesterol markedly reduces ion permeability induced by membrane-bound amphotericin B. Biochim. Biophys. Acta., 1564, 429-434 (2002) https://doi.org/10.1016/S0005-2736(02)00491-1
- Mclain, N., Ascanio, R., Baker, C., Strohaver, R. A., and Dolan, J. W., Undeclenic acid inhibits morphogenesis of Candida albicans. Antimicrob. Agents Chemother., 44, 2873-2875 (2000) https://doi.org/10.1128/AAC.44.10.2873-2875.2000
- Paik, S. K., Yun, H. S., Sohn, H., and Jin, I., Effect of trehalose accumulation on the intrinsic and acquired thermotolerance on a natural isolate Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol., 13, 85-89 (2003)
- Schulze, U., Larsen, M. E., and Villadsen, J., Determination of intracellular trehalose and glycogen in Saccharomyces cerevisiae. Anal. Biochem., 228, 143-149 (1995) https://doi.org/10.1006/abio.1995.1325
- Sengupta, S., Jana, M. L., Sengupta, D., and Naskar, A. K., A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl. Microbiol. Biotech., 53, 732-735 (2000) https://doi.org/10.1007/s002530000327
- Shin, S. Y., Kang, S., Lee, D. G., Eom S. H., Song, W. K., and Kim, J. I., CRAMP analogues having potent antibiotic activity against bacterial, fungal, and tumor cells without hemolytic activity. Biochem. Biophys. Res. Commun., 275, 904-909 (2000) https://doi.org/10.1006/bbrc.2000.3269
- Silva, G. L., Chai, H., Gupta, M. P., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M., Beecher, C. W., and Kinghorn, A. D., Cytotoxic biflavonoids from Selaginella willdenowii. Phytochemistry, 40, 129–134 (1995) https://doi.org/10.1016/0031-9422(95)00212-P
- Woo, E.-R., Lee, J. Y., Cho, I. J., Kim, S. G., and Kang, K. W., Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-kappaB activation in macrophages. Pharmacol. Res., 51, 539-546 (2005) https://doi.org/10.1016/j.phrs.2005.02.002