The Transport of Organic Cations in the Small Intestine: Current Knowledge and Emerging Concepts

  • Kim, Moon-Kyoung (Laboratory of Transporters Targeted Drug Design, College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Shim, Chang-Koo (Laboratory of Transporters Targeted Drug Design, College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Published : 2006.07.01

Abstract

A wide variety of drugs and endogenous bioactive amines are organic cations (OCs). Approximately 40% of all conventional drugs on the market are OCs. Thus, the transport of xenobiotics or endogenous OCs in the body has been a subject of considerable interest, since the discovery and cloning of a family of OC transporters, referred to as organic cation transporter (OCTs), and a new subfamily of OCTs, OCTNs, leading to the functional characterization of these transporters in various systems including oocytes and some cell lines. Organic cation transporters are critical in drug absorption, targeting, and disposition of a drug. In this review, the recent advances in the characterization of organic cation transporters and their distribution in the small intestine are discussed. The results of the in vitro transport studies of various OCs in the small intestine using techniques such as isolated brush-border membrane vesicles, Ussing chamber systems and Caco-2 cells are discussed, and in vivo knock-out animal studies are summarized. Such information is essential for predicting pharmacokinetics and pharmacodynamics and in the design and development of new cationic drugs. An understanding of the mechanisms that control the intestinal transport of OCs will clearly aid achieving desirable clinical outcomes.

Keywords

References

  1. Akaike, N., Yatani, A., Nishi, K., Oyama, Y., and Kuraoka, S., Permeability to various cations of the voltage-dependent sodium channel of rat single heart cells. J. Pharmacol. Exp. Ther., 228, 225-229 (1984)
  2. Benowitz, N. L., Pharmacokinetic aspects of cigarette smoking and nicotine addiction. New. Eng. J. Med., 319, 1318-1330 (1988) https://doi.org/10.1056/NEJM198811173192005
  3. Bleasby, K., Chauhan, S., and Brown, C. D. A., Characterization of $MPP^+$ secretion across human intestinal Caco-2 cell monolayers: role of P-glycoprotein and a novel $Na^+$-dependent organic cation transport mechanism. Br. J. Pharmacol., 129, 619-615 (2000) https://doi.org/10.1038/sj.bjp.0703078
  4. Busch A. E., Quester, S., Ulzheimer J. C., Waldegger, S., Gorboulev, V., Arndt, P., Lang, F., and Koepsell, H., Electronic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J. Biol. Chem., 271, 32577-32604 (1996)
  5. Cova, E., Laforenza, U., Gastaldi, G.., Sambuy, Y., Tritto, S., Faelli, A., and Ventura, U., Guanidine transport across the apical and basolateral membrane of human intestinal Caco-2 cells is mediated by two different mechanism. J. Nutr., 132, 1995-2003 (2002)
  6. Dresser, M. J., Leabman, M. K., and Giacomini, K. M., Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci., 90, 397-421 (2001) https://doi.org/10.1002/1520-6017(200104)90:4<397::AID-JPS1000>3.0.CO;2-D
  7. Dudeja P. K., Tyagi S., Kavilaveettil, R. J., Gill, R., and Said, H. M., Mechanism of thiamine uptake by human jejunal brushborder membrane vesicles. Am. J. Physiol. Cell. Physiol., 281, C786-792 (2001) https://doi.org/10.1152/ajpcell.2001.281.3.C786
  8. Engel, G., Hoyer, D., Kalkman, H. O., and Wick, M. B., Identification of 5HT2 receptors on longitudinal muscle of guinea pig ileum. J. Recept. Res., 4, 113-126 (1984) https://doi.org/10.3109/10799898409042543
  9. Flagstad, A., Nielsen, P., and Trojaborg, W., Pharmacokinetics and pharmacodynamics of guanidine hydrochloride in a hereditary myasthenia gravis-like disorder in dogs. J. Vet. Pharmacol. Ther., 9, 318-324 (1986) https://doi.org/10.1111/j.1365-2885.1986.tb00047.x
  10. Fukuda, A, Saito, H., and Inui, K. I., Transport mechanisms of nicotine across the human intestinal epithelial cell line Caco- 2. J. Pharmacol. Exp. Ther., 302, 532-538 (2002) https://doi.org/10.1124/jpet.102.034629
  11. Gorboulev, V., Ulzheimer, J. C., Akhoundova, A., Ulzheimer- Teuber, I., Karbach, U., Guester, S., Baumann, C., Lang, F., Busch, A. E, and Koepsell, H., Cloning and characterization of two human polyspecific organic cation transporters. D.N.A. Cell. Biol., 16, 871-881 (1997) https://doi.org/10.1089/dna.1997.16.871
  12. Grundemann, D., Gorboulev, V., Gambaryan, S., and Koepsell, V. H., Drug Excretion mediated by a new prototype of polyspecific transporter. Nature, 372, 549-552 (1994) https://doi.org/10.1038/372549a0
  13. Grundemann, D., Babin-Ebell, J., Martel, F., Ording, N., Schmidt, A., and Schomig, E., Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J. Biol. Chem., 272, 10408- 10413 (1997) https://doi.org/10.1074/jbc.272.16.10408
  14. Grundemann, D., Schechinger, B., Rappold, G.. A., and Schomig, E., Molecular identification of the corticosteronesensitive extraneuronal catecholamine transporter. Nature neurosci., 1, 349-352 (1998) https://doi.org/10.1038/1557
  15. Grundemann, D., Liebich, G.., Kiefer, N., Koster, S., and Schomig, E., Selective substrate for non-neuronal monoamine transporters. Mol. Pharmacol., 56, 1-10 (1999) https://doi.org/10.1124/mol.56.1.1
  16. Hsing, S., Gatmaitan, Z., and Arias, I. M., The function of Gp170, the multidrug-resistance gene product, in the brush border of rat intestinal mucosa. Gastroenerology, 102, 879- 885 (1992) https://doi.org/10.1016/0016-5085(92)90173-V
  17. Hunter, J., Hirst, B. H., and Simmons, N. L., Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm. Res., 10, 743-749 (1993a) https://doi.org/10.1023/A:1018972102702
  18. Hunter, J., Jepson, M. A., Tsuruo, T., Simmons N. L., and Hirst B. H., Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem., 268, 14991-14997 (1993b)
  19. Imada-Shirakata, Y., Kotera, T., Ueda, S., and Okuma, M., Serotonin activates electrolyte transport via 5HT2A receptor in colonic crypt cells. Biochem. Biophys. Res. Commun., 230, 437-441 (1997) https://doi.org/10.1006/bbrc.1996.5921
  20. Israili, Z. H. and Dayton, P., Enhancement of xenobiotic elimination: role of intestinal excretion. Drug. Metab. Rev., 15, 1123-1159 (1984) https://doi.org/10.3109/03602538409033559
  21. Javitch, J. A., D'Amato, R. J., Strittmatter, S. M., and Snyder, S. H., Parkinsonism-inducing neurotoxin N-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine: uptake of the metabolite Nmethyl- 4-phenylpyridinium by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. U.S.A., 82, 2173- 2177 (1985)
  22. Jonker, J. W., Wagenaar, E., Mol, C. A. A. M., Buitelaar, M., Koepsell, H., Smit, J. W., and Schinkel, A. H., Reduced hepatic uptake and intestinal excretion of organic cation in mice with a targeted disruption of the organic cation transporter 1 (Oct1[Slc22al]) gene. Mol. Cell Biol., 21, 5471- 5477 (2001) https://doi.org/10.1128/MCB.21.16.5471-5477.2001
  23. Jonker, J. W., Wagenaar, E., Eijl, S., and Schinkel, A. H., Deficiency in the organic cation transporters 1 and 2 (Oct1/ Oct2[Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol. Cell Biol., 23, 7902-7908 (2003) https://doi.org/10.1128/MCB.23.21.7902-7908.2003
  24. Kamath, A. V., Darling, I. M., and Morris, A. E., Choline uptake in human intestinal Caco-2 cells is carrier-mediated. J. Nutr., 133, 2607-2611 (2003)
  25. Karbach, U., Kricke, J., Meyer-Wentrup, F., Gorboulev, V., Volk, C., Loffing-Cueni, D., Kaissling, B., Bachmann, S., and Koepsell, H., Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am. J. Physiol. Renal. Physiol., 279, F679-F687 (2000) https://doi.org/10.1152/ajprenal.2000.279.4.F679
  26. Katsura, T. and Inui, K. Intestinal absorption of drugs mediated by drug transporters' mechanisms and regulation. Drug. Metab. Pharmacokinet., 18, 1-15 (2003) https://doi.org/10.2133/dmpk.18.1
  27. Kekuda, R., Prasad, P. D., Wu, X., Wang, H., Fei, Y. J., Leibach, F. H., and Ganapathy, V., Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J. Biol. Chem., 273, 15971-15979 (1998) https://doi.org/10.1074/jbc.273.26.15971
  28. Kim, M. K., Lewei, H., Choi, M. K., Han, Y. H., Kim, D. D., Chung, S. J., and Shim, C. K., Dose dependency in the oral bioavailability of an organic cation model, tributylmethyl ammonium (TBuMA), in rats: association with the saturation of efflux by the P-gp system on the apical membrane of the intestinal epithelium. J. Pharm. Sci., 94, 2644-2655 (2005) https://doi.org/10.1002/jps.20456
  29. Koepsell, H., Organic cation transporters in intestine, kidney, liver, and brain. Annu. Rev. Physiol., 60, 243-266 (1998) https://doi.org/10.1146/annurev.physiol.60.1.243
  30. Koepsell, H., Schmitt, B. M., and Gorboulev, V., Organic cation transporters. Rev. Physiol. Biochem. Pharmacol., 150, 36-90 (2003) https://doi.org/10.1007/s10254-003-0017-x
  31. Kuo, S. M., Whitby, B. R., Artursson, P., and Ziemniak, J. A., The contribution of intestinal secretion to the dose-dependent absorption of celiprolol. Pharm. Res., 11, 648-653 (1994) https://doi.org/10.1023/A:1018959809352
  32. Laforenza, U., Orsenigo, M. N., and Rindi, G., A thiamine/$H^2$ antiport mechanism for thiamine entry into brush border membrane vesicles from rat small intestine. J. Membrane Biol., 161, 151-161 (1998) https://doi.org/10.1007/s002329900322
  33. Lazaruk, K. D. A. and Wright, S. H., $MPP^+$ is transported by the TEA-$H^+$ exchanger of renal brush-border membrane vesicles. Am. J. Physiol., 258, F597-F605 (1990)
  34. Lee, K., Ng, C., Brouwer, L. R., and Thakker, D. R., Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers. J. Pharmacol. Exp. Ther., 303, 574-580 (2002) https://doi.org/10.1124/jpet.102.038521
  35. Lee, W. I. and Kim, R. B., Transporters and renal drug elimination. Annu. Rev. Pharmacol. Toxicol., 44, 137-166 (2004) https://doi.org/10.1146/annurev.pharmtox.44.101802.121856
  36. Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K., Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J. Biol. Chem., 272, 6471-6478 (1997) https://doi.org/10.1074/jbc.272.10.6471
  37. Martel, F., Martins, M. J., and Azevedo, I., Inward transport of [$^{3}H$]$MPP^+$ in freshly isolated rat hepatocytes: evidence for interaction with catecholamines. Naunyn-Schmiedeberg's Arch. Pharmacol., 354, 305-311 (1996a)
  38. Martel, F., Vetter, T., Russ, H., Grundemann, D., Azevedo, I., Koepsell, H., and Schomig, E., Transport of small organic cations in the rat liver: The role of the organic cation transporter OCT1. Naunyn Schmiedebergs Arch. Pharmacol., 354, 320- 326 (1996b)
  39. Martel, F., Martin, M. J., Hipolito-Reis, C., and Azevedo, I., Inward transport of [3H]-1-methyl-4-phenylpyridinium in rat isolated hepatocytes: putative involvement of a P-glycoprotein transporter. Br. J. Pharmacol., 119, 1519-1524 (1996c) https://doi.org/10.1111/j.1476-5381.1996.tb16067.x
  40. Martel, F., Martins, M. J., Calhau, C., Hipolito-Reis, C., Azevedo, I., Postnatal development of organic cation transport in the rat liver. Pharmacol. Res., 37, 131-136 (1998a) https://doi.org/10.1006/phrs.1997.0283
  41. Martel, F., Calhau, C., and Hipolito-Reis, C., Effect of bile duct obstruction on hepatic uptake of 1-methyl-4-phenylpyridinium in the rat. Pharmacol. Res., 37, 497-504 (1998b) https://doi.org/10.1006/phrs.1998.0325
  42. Martel, F., Martin, M. J., Calhau, C., and Azevedo, I., Comparison between uptake2 and rOCT1: effects of catecholamines, methanephrines and corticosterone. Naunyn-Schmiedeberg's Arch. Pharmacol., 359, 303-309 (1999) https://doi.org/10.1007/PL00005356
  43. Martel, F., Calhau, C., and Azevedo, I., Characterizaion of the transport of the organic cation [$^{3}H$]$MPP^+$ in human intestinal epithelial (Caco-2) cells. Naunyn-Schmeideberg's Arch. Pharmacol., 316, 505-513 (2000)
  44. Martel F., Grundemann, D., Calhau, C., and Schomig, E., Apical uptake of organic cations by human intestinal Caco-2 cells: putative involvement of ASF transporter. Naunyn-Schmeideberg's Arch. Pharmacol., 313, 40-49 (2001)
  45. Martel, F., Monteiro, R., and Lemos, C., Uptake of serotonin at the apical and basolateral membranes of human intestinal epithelial (Caco-2) cells occurs through the neuronal serotonin transport (SERT) J. Pharmacol. Exp. Ther., 306, 355-362 (2003) https://doi.org/10.1124/jpet.103.049668
  46. McCleskey, E. W. and Almers, W., The $Ca^+$ channel in skeletal muscle is a large pore. Proc. Natl. Acad. Sci. U.S.A., 82, 7149-7153 (1985)
  47. Melamed, E., Rosenthal, J., Cohen, O., Globus, M., and Uzzan, A., Dopamine but not norepinephrine or serotonin uptake inhibitors protect mice against neurotoxicity of MPTP. Eur. J. Pharmacol., 226, 179-181 (1985)
  48. Miyamoto, K., Ganapathy, V., and Leibach, F. H., Transport of guanidine in rabbit intestinal brush-border membrane vesicles. Am. J. Physiol., 255, G85-G92 (1988)
  49. Mizuuchi, H., Katsura, T., Saito, H., Hashimoto, Y., and Inui, K. I., Transport Characteristics of diphenhydramine in human intestinal epithelial Caco-2 cells: Contribution of pHdependent transport system. J. Pharmacol. Exp. Ther., 290, 388-392 (1999)
  50. Mizuuchi, H., Katsura, T., Hashimoto, Y., and Inui, K. I., Transepithelial transport of dephenhydramine across monolayers of the human intestinal epithelial cell line Caco-2. Pharm. Res., 17, 539-545 (2000a) https://doi.org/10.1023/A:1007560731098
  51. Mizuuchi, H., Katsura, T., Ashida, K., Hashimoto, Y., and Inui, K. I., Diphenhydramine transport by pH-dependent tertiary amine transport system in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 278, G563-G569 (2000b) https://doi.org/10.1152/ajpgi.2000.278.4.G563
  52. Muller, J., Lips, K. S., Metzner, L., Neubert, R. H. H., Koepsell, H., and Bransch, M., Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem. Pharmacol., 70, 1851-1860 (2005) https://doi.org/10.1016/j.bcp.2005.09.011
  53. Neuhoff, S., Ungell, A. L., Zamora, I., and Artursson, P., pHdependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: Implications for drug-drug interactions. Pharm. Res., 20, 1141-1148 (2003) https://doi.org/10.1023/A:1025032511040
  54. Okuda, M., Saito, H., Urakami, Y., Takano, M., and Inui, K. I., cDNA colonig and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem. Biophys. Res. Commun., 224, 500-507 (1996) https://doi.org/10.1006/bbrc.1996.1056
  55. Paton, D. M. and Webster, D. R., Clinical pharmacokinetics of H1-receptor antagonists (the antihistamines). Clin. Pharmacokinet., 10, 477-97 (1985) https://doi.org/10.2165/00003088-198510060-00002
  56. Pritchard JB, Walsh RC, Sweet DH. 1997. Characterization of organic cation transporter 2 (OCT2) isolated from rat kidney. FASEB J 11, A278 (Abstr.)
  57. de Roos, A. M., Rekker, R. F., and Nauta, W. T., The base strength of substituted 2-(diphenylmethoxy)-N,N-dimethylethylamines. Arzneim. Forsch., 20, 1763-1765 (1970)
  58. Russ, H., Gliese, M., Sonna, J., and Schomig, E., The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium ($MPP^+$). Naunyn-Schmiedeberg's Arch. Pharmacol., 346, 158-165 (1992) https://doi.org/10.1007/BF00165297
  59. Russ, H., Staudt, K., Martel, F., Gliese, M., and Schomig, E., The extraneuronal transporter for monoamine transmitters exists in cells derived from human central nervous system glia. Eur. J. Neurosci., 8, 1256-1264 (1996) https://doi.org/10.1111/j.1460-9568.1996.tb01294.x
  60. Said H. M., Ortiz, A., Kumar, C. K., Chatterjee, N., Dudeja, P. K., and Rubin, S., Transport of thiamine in human intestine: mechanism and regulation in intestinal epithelial cell model Caco-2. Am. J. Physiol., 277, C645-C651 (1999) https://doi.org/10.1152/ajpcell.1999.277.4.C645
  61. Sayer, L. M., Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol. Lett., 48, 121-149 (1989) https://doi.org/10.1016/0378-4274(89)90168-9
  62. Schievelbein, H. and Barfour, D. J. K., (Ed.), Nicotine and the Tobacco Smoking Habit, Pergamon Press, Oxford, pp.1-15. (1984)
  63. Schomig, E., Spitzenberger, F., Engelhardt, M., Martel, F., Ording, N., and Grundemann, D., Molecular cloning and characterization of two novel transport proteins from rat kidney. F.E.B.S. Letter 425, 79-86 (1998) https://doi.org/10.1016/S0014-5793(98)00203-8
  64. Sekine, T., Kusuhara, H., Utsunomiya-Tate, N., Tsuda, M., Sugiyama, Y., Kanai, N., and Endou, H., Molecular cloning and characterization of high-affinity carnitine transporter. Biochem. Biophys. Res. Commun., 251, 586-591 (1998) https://doi.org/10.1006/bbrc.1998.9521
  65. Sekine, T., Cha, S. H., and Endou, H., The multispecific organic anion transporter (OAT) family. Pflugers Arch., 440, 337-350 (2000) https://doi.org/10.1007/s004240000297
  66. Slitt, A. L., Cherrington, N. J., Hartley, D.P., Leazer, T. M., and Klassen, C. D., Tissue distribution and renal developmental changes in rat organic cation transporter mRNA levels. Drug. Metab. Dispos., 30, 212-219 (2002) https://doi.org/10.1124/dmd.30.2.212
  67. Sokol, P. P., Holohan, P. D., and Ross, C. R., The neurotoxins 1- methyl-4-phenylpyridinium and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine are substrates for the organic cation transporter in renal brush border membrane vesicles. J. Pharmacol. Exp. Ther., 242, 152-157 (1987)
  68. Song, I. S., Chung, S. J., and Shim, C. K., Contribution of ion pair complexation with bile salts to biliary excretion of organic cations in rats. Am. J. Physiol., 281, G515-G525 (2001)
  69. Streich, S., Bruss, M., and Bonisch, H., Expression of the extraneuronal monoamine transporter (uptake2) in human glioma cells. Naunyn-Schmiedeberg's Arch. Pharmacol., 353, 328- 333 (1996) https://doi.org/10.1007/BF00168636
  70. Sugawara-Yokoo, M., Urakami, Y., Koyama, H., Fujikura, K., Masuda, S., Saito, H., Naruse, T., Inui, K. I., and Takata, K., Differential localization of organic cation transporters rOCT1 and OCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem. Cell. Biol., 114, 175-180 (2000)
  71. Tamai, I., Yabuuchi, H., Nezu, J., Sai, Y., Oku, A., Shimane, M., and Tsuji, A., Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 419, 107-111 (1997) https://doi.org/10.1016/S0014-5793(97)01441-5
  72. Tamai, I., Ohashi, R., Nezu J. I., Yabuuchi, H., Oku, A., Shimane, M., Sai, Y., and Tsuji, A., Molecular and functional identification of sodium ion-dependent high affinity human carnitine transporter OCTN2. J. Biol. Chem., 273, 20378- 20382 (1998) https://doi.org/10.1074/jbc.273.32.20378
  73. Tan, T., Kuramoto, M., Takahashi, T., Nakamura, H., Nakanishi, Y., Imasato, Y., and Yoshimura, H., Characteristics of the gastrointestinal absorption of morphine in rats. Chem. Pharm. Bull., 37, 168-173 (1989) https://doi.org/10.1248/cpb.37.168
  74. Tanphaichirt, V., Thiamine. In: Modern Nutrition in Health and Disease, edited by Shils ME, Olsen JA, Shike M. New York: Lea and Febiger, p.359-375 (1994)
  75. Terashita, S., Dresser, M. J., Zhang, L., Gray, A. T., Yost, S. C., and Giacomini K. M., Molecular cloning and functional expression of a rabbit renal organic cation transporter. Biochim. Biophys. Acta., 1369, 1-6 (1998) https://doi.org/10.1016/S0005-2736(97)00207-1
  76. Tsuji, A. and Takami, I., Carrier-mediated intestinal transport of drugs. Pharm. Res., 13, 963-977 (1996) https://doi.org/10.1023/A:1016086003070
  77. Turnheim, K. and Lauterbach, F., Absorption and secretion of monoquaternary ammonium compounds by the isolated intestinal mucosa. Biochim. Pharmacol., 26, 99-108 (1977) https://doi.org/10.1016/0006-2952(77)90379-3
  78. Turnheim, K. and Lauterbach, F., Interaction between intestinal absorption and secretion of monoquarternary ammonium compounds in guinea pigs – a concept for the absorption kinetics of organic cations. J. Pharmacol. Exp. Ther., 212, 418-424 (1980)
  79. Urakami, Y., Okuda, M., Masuda, S., Saito, H., and Inui, K. I., Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J. Pharmacol. Exp. Ther., 287, 800-805 (1998)
  80. Wade, P. R., Chen, J., Jaffe, B., Kassem, I. S., Blakely, R. D., and Gershon, M. D., Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J. Neurosci., 16, 2352-2364 (1996) https://doi.org/10.1523/JNEUROSCI.16-07-02352.1996
  81. Walsh, R. C., Sweet, D. H., Hall, L. A., and Pritchard, J. B., Expression cloning and characterization of a novel organic cation transporter from rat kidney, F.A.S.E.B. J 10, A127 (Abstr.) (1996)
  82. Wang, D. S., Jonker, J. W., Kato, Y., Kusuhara, H., Schinkel, A. H., and Sugiyama, Y., Involvement of organic cation transporter 1 in hepatic and intestinal disruption of metformin. J. Pharmacol. Exp. Ther., 302, 510-515 (2002) https://doi.org/10.1124/jpet.102.034140
  83. Weber, W. and Kewitz, H., Determination of thiamine in human plasma and its pharmacokinetics. Eur. J. Clin. Pharmacol., 28, 213-219 (1985) https://doi.org/10.1007/BF00609694
  84. Wu, X., Prasad, P. D., Leibach, F. H., and Ganapathy, V., cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem. Biophys. Res. Commun., 246, 589-595 (1998b) https://doi.org/10.1006/bbrc.1998.8669
  85. Wu, X., Kekuda, R., Huang, W., Fei, Y. J., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J. Biol. Chem., 273, 32776-32786 (1998a) https://doi.org/10.1074/jbc.273.49.32776
  86. Wu, X., Huang, W., Prasad, P. D., Seth, P., Rajan, D. P., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V., Structure, function, and regional distribution of the organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J. Pharmacol. Exp. Ther., 290, 1482-1492 (1999)
  87. Wu, X., Huang, W., Ganapathy, M. E., Wang, H., Kekuda, R., Conway S. J., Leibach F. H., and Ganapathy, V., Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am. J. Physiol., 279, F449- F458 (2000a)
  88. Wu, X., George. R. L., Huang, W., Wang, H., Conway, S. J., Leibach, F. H., and Ganapathy, V., Structural and functional characteristics and tissue distribution pattern of rat OCTN1, and organic cation transporter, cloned from placenta. Biochem. Biophys. Acta., 1466, 315-327 (2000b) https://doi.org/10.1016/S0005-2736(00)00189-9
  89. Yabuuchi, H., Tamai, I., Nezu, J., Sakamoto, K., Oku, A., Shimane, M., Sai, Y., and Tsuji, A., Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther., 289, 768-773 (1999)
  90. Zeisel, S. H., Dietary choline: biochemistry, physiology, and pharmacology. Annu. Rev. Nutr., 1, 95-121 (1981) https://doi.org/10.1146/annurev.nu.01.070181.000523
  91. Zeisel S. H., Choline: needed for normal development of memory. J. Am. Coll. Nutr., 19 (suppl.), 528S-531S (2000) https://doi.org/10.1080/07315724.2000.10718976
  92. Zhang, L., Dresser, M. J., Gray A. T., Yost S. C., Terashita, S., and Giacomini, K. M., Cloning and functional expression of a human liver organic cation transporter. Mol. Pharmacol., 51, 913-921 (1997) https://doi.org/10.1124/mol.51.6.913
  93. Zhang, L., Brett, C. M., and Giacomini, K. M., Role of organic cation transporters in drug absorption and elimination. Annu. Rev. Pharmacol. Toxicol., 38, 431-460 (1998) https://doi.org/10.1146/annurev.pharmtox.38.1.431
  94. Zwart, R., Verhaagh, S., Buitelaar, M., Popp-Snijder, C., and Barlow, D. P., Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/ Slc22a3-deficient mice. Mol. Cell Biol., 21, 4188-4196 (2001) https://doi.org/10.1128/MCB.21.13.4188-4196.2001