In Vitro Anti-Cariogenic Activity of Dichloromethane Fraction from Rheum undulatum L. Root

  • Song, Ju-Hee (Department of Preventive Dentistry, Chonbuk National University) ;
  • Yang, Tae-Cheol (Department of Preventive Dentistry, Chonbuk National University) ;
  • Chang, Kee-Wan (Department of Preventive Dentistry, Chonbuk National University) ;
  • Han, Seong-Kyu (Department of Oral Physiology, Chonbuk National University) ;
  • Yi, Ho-Keun (Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University) ;
  • Jeon, Jae-Gyu (Department of Preventive Dentistry, Chonbuk National University)
  • Published : 2006.06.01

Abstract

This study aimed to evaluate in vitro effects of Rheum undulatum L. root on the development of dental caries, especially its effects on viability, dental plaque formation, and glycolytic acid production of Streptococcus mutans and Streptococcus sobrinus. Methanol extract of Rheum undulatum L. root and its fractions were prepared and tested. Among the test extract and fractions, dichloromethane fraction (DF) showed the most active antibacterial activity (inhibition zone: 13-17 mm) against S. mutans and S. sobrinus in a disc diffusion method. Minimal inhibitory concentrations (MICs) of DF against these bacteria ranged from 0.25 to 0.5 mg/mL. Furthermore, DF significantly inhibited the caries-inducing factors of these bacteria. At sub-MIC levels, DF inhibited in vitro dental plaque formation by S. mutans and S. sobrinus ($IC_{50}$= 0.079 and 0.142 mg/mL, respectively), which was caused, in part, by the inhibitory effect on the activity of glucosyltransferases. A significant reduction of glycolytic acid production was found at the concentration as low as 0.032 mg/mL for S. mutans and 0.063 mg/mL for S. sobrinus. The possible bioactive compounds that are inducing in vitro anti-cariogenic activity of DF are unknown. Based on the preliminary phytochemical analysis, the activity of DF may be related to the presence of anthraquinones, cardiac glycosides, coumarines, sterols/terpenes, and phenolics. These results indicate that DF is probably useful for the control of dental plaque formation and subsequent dental caries development.

Keywords

References

  1. Cos, P., De Bruyne, T., Hermans, N., Apers, S., Berghe, D. V., and Vlietinck, A. J., Proanthocyanidins in health care: current and new trends. Curr. Med. Chem., 11, 1345-1359 (2004) https://doi.org/10.2174/0929867043365288
  2. Eley, B. M., Antibacterial agents in the control of supragingival plaque-a review. Br. Dent. J., 27, 286-296 (1999)
  3. Fejerskov, O., Scheie, A. A., and Manji, F., The effect of sucrose on plaque pH in the primary and permanent dentition of caries-inactive and -active Kenyan children. J. Dent. Res., 71, 25-31 (1992) https://doi.org/10.1177/00220345920710010401
  4. Gaffar, A., Afflitto, J., and Nabi, N., Chemical agents for the control of plaque and plaque microflora: an overview. Eur. J. Oral Sci., 105, 502-507 (1997) https://doi.org/10.1111/j.1600-0722.1997.tb00237.x
  5. Gibbons, S. and Gray, A., Isolation by Planar Chromatography, In Cannell, R. P. (Ed). Natural Products Isolation. Humana Press Inc, New Jersey, pp. 209-245, (1988)
  6. Hajishengallis, G. and Michalek, S. M., Current status of a mucosal vaccine against dental caries. Oral Microbiol. Immunol., 14, 1-20 (1999) https://doi.org/10.1034/j.1399-302X.1999.140101.x
  7. Hamada, S., Horikoshi, T., Minami, T., Okahashi, N., and Koga, T., Purification and characterization of cell-associated glucosyltransferase synthesizing water-insoluble glucan from serotype c Streptococcus mutans. J. Gen. Microbiol., 135, 335-344 (1989)
  8. Hamada, S. and Slade, H. D., Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev., 44, 331-384 (1980)
  9. Hamada, S. and Torii, M., Effect of sucrose in culture media on the location of glucosyltransferase of Streptococcus mutans and cell adherence to glass surfaces. Infect. Immun., 20: 592-599 (1978)
  10. Hashimoto, K., Yanagi, K., Fukushima, K., and Uda, Y., Effect of 3-hydroxymethylene-2-thioxopyrrolidine on growth of two species of mutans streptococci and their in vitro plaque formation. Int. J. Antimicrob. Agents, 17, 97-102 (2001) https://doi.org/10.1016/S0924-8579(00)00314-9
  11. Havsteen, B., Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol., 32, 1141- 1148 (1983) https://doi.org/10.1016/0006-2952(83)90262-9
  12. Hur, J., Dong-Eui-Bo-Gam Vol. VI. Yeogang Press, Seoul, pp. 519-526, (1994)
  13. Jagtap, A. G. and Karkera, S. G., Extract of Juglandaceae regia inhibits growth, in vitro adherence, acid production and aggregation of Streptococcus mutans. J. Pharm. Pharmacol., 52, 235-242 (2000) https://doi.org/10.1211/0022357001773751
  14. Kakuta, H., Iwami, Y., Mayanagi, H., and Takahashi, N., Xylitol inhibition of acid production and growth of mutans Streptococci in the presence of various dietary sugars under strictly anaerobic conditions. Caries Res., 37, 404-409 (2003) https://doi.org/10.1159/000073391
  15. Ko, S. K., A new stilbene diglycoside from Rheum undulatum. Arch. Pharm. Res., 23,159-162 (2000) https://doi.org/10.1007/BF02975506
  16. Ko, S. K., Lee, S. M., and Whang, W. K., Anti-platelet aggregation activity of stilbene derivatives from Rheum undulatum. Arch. Pharm. Res., 22, 401-403 (1999) https://doi.org/10.1007/BF02979065
  17. Koo, H., Gomes, B. P., Rosalen, P. L., Ambrosano, G. M., Park, Y. K., and Cury, J. A., In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Arch. Oral Biol., 45, 141-148 (2000) https://doi.org/10.1016/S0003-9969(99)00117-X
  18. Koo, H., Pearson, S.K., Scott-Anne, K., Abranches, J., Cury, J. A., Rosalen, P. L., Park, Y. K, Marquis, R. E., and Bowen, W. H., Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats. Oral. Microbiol. Immunol., 17, 337-343 (2002) https://doi.org/10.1034/j.1399-302X.2002.170602.x
  19. Lee, J. H., Kim, J. M., and Kim, C., Pharmacokinetic analysis of rhein in Rheum undulatum L. J. Ethnopharmacol., 84, 5-9 (2003) https://doi.org/10.1016/S0378-8741(02)00222-2
  20. Loesche, W. J., Role of Streptococcus mutans in human dental decay. Microbiol. Rev., 50, 353-380 (1986)
  21. Madison, K. M., Bowen, W. H., Pearson, S. K., and Falany, J. L., Enhancing the virulence of Streptococcus sobrinus in rats. J. Dent. Res., 70, 38-43 (1991) https://doi.org/10.1177/00220345910700010601
  22. Matsumoto, M., Minami, T., Sasaki, H., Sobue, S., Hamada, S., and Ooshima, T., Inhibitory effects of oolong tea extract on caries-inducing properties of mutans streptococci. Caries Res., 33, 441-445 (1999) https://doi.org/10.1159/000016549
  23. Mehansho, H., Butler, L. G., and Carlson, D. M., Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annu. Rev. Nutr., 7, 423-440 (1987) https://doi.org/10.1146/annurev.nu.07.070187.002231
  24. Mukasa, H., Tsumori, H., and Shimamura, A., Isolation and characterization of an extracellular glucosyltransferase synthesizing insoluble glucan from Streptococcus mutans serotype c. Infect. Immun., 49, 790-796 (1985)
  25. Ojala, T., Remes, S., Haansuu, P., Vuorela, H., Hiltunen, R., Haahtela, K., and Vuorela P., Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol., 73, 299-305 (2000) https://doi.org/10.1016/S0378-8741(00)00279-8
  26. Rasheed, A. and Haider, M., Antibacterial activity of Camellia sinensis extracts against dental caries. Arch. Pharm. Res., 21,348-352 (1998) https://doi.org/10.1007/BF02975300
  27. Sahin, F., Karaman, I., Gulluce, M., Ogutcu, H., Sengul, M., Adiguzel, A., Ozturk, S., and Kotan, R., Evaluation of antimicrobial activities of Satureja hortensis L. J. Ethnopharmacol., 87, 61-65 (2003) https://doi.org/10.1016/S0378-8741(03)00110-7
  28. Sreenivasan, P. and Gaffar, A., Antiplaque biocides and bacterial resistance: a review. J. Clin. Periodontol., 29, 965-974 (2002) https://doi.org/10.1034/j.1600-051X.2002.291101.x
  29. Tanzer, J.M., Dental caries is a transmissible infectious disease: the Keyes and Fitzgerald revolution. J. Dent. Res., 74, 1536- 1542 (1995) https://doi.org/10.1177/00220345950740090601
  30. Wagner, H. and Bladt, S., Plant Drug Analysis: A Thin Layer Chromatography Atlas (2nd edn). Springer, Berlin, pp. 349- 364, (2001)
  31. Wiater, A., Choma, A., and Szczodrak, J., Insoluble glucans synthesized by cariogenic streptococci: a structural study. J. Basic Microbiol., 39, 265-273 (1999) https://doi.org/10.1002/(SICI)1521-4028(199909)39:4<265::AID-JOBM265>3.0.CO;2-0
  32. Yang, D. Y., Fushimi, H., Cai, S. Q., and Komatsu, K., Molecular analysis of Rheum species used as Rhei Rhizoma based on the chloroplast matK gene sequence and its application for identification. Biol. Pharm. Bull., 27, 375-383 (2004) https://doi.org/10.1248/bpb.27.375