The Effect of $Luteolin-7-O-{\beta}-D-Glucuronopyranoside$ on Gastritis and Esophagitis in Rats

  • Min, Young-Sil (Department of Pharmaceutical Botany, College of Pharmacy, Chung Ang University) ;
  • Bai, Ki-Lyong (Department of Pharmaceutical Botany, College of Pharmacy, Chung Ang University) ;
  • Yim, Sung-Hyuk (Department of Pharmaceutical Botany, College of Pharmacy, Chung Ang University) ;
  • Lee, Young-Joo (Department of Pharmaceutical Botany, College of Pharmacy, Chung Ang University) ;
  • Song, Hyun-Ju (Department of Pharmaceutical Botany, College of Pharmacy, Chung Ang University) ;
  • Kim, Jin-Hak (Department of Pharmaceutical Botany, College of Pharmacy, Chung Ang University) ;
  • Ham, In-Hye (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Whang, Wan-Kyun (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Sohn, Uy-Dong (Department of Pharmaceutical Botany, College of Pharmacy, Chung Ang University)
  • Published : 2006.06.01

Abstract

This Study evaluated the inhibitory action of $luteolin-7-O-{\beta}-D-glucuronopyranoside$, luteolin which was isolated from Salix gilgiana leaves, and omeprazole on reflux esophagitis and gastritis in rats. Reflux esophagitis and gastritis were induced surgically and by the administration of indomethacin, respectively. The intraduodenal administration of $luteolin-7-O-{\beta}-D-glucuronopyranoside$ decreased the ulcer index, injury area, gastric volume and acid output, and increased the gastric pH compared with luteolin. $Luteolin-7-O-{\beta}-D-glucuronopyranoside$ significantly decreased the size of the gastric lesions that had been induced by exposing the gastric mucosa to indomethacin. The malondialdehyde content, which is the end product of lipid peroxidation, was increased significantly after inducing of reflux esophagitis. The malondialdehyde content was decreased by $Luteolin-7-O-{\beta}-D-glucuronopyranoside$ but not luteolin or omeprazole. $Luteolin-7-O-{\beta}-D-glucuronopyranoside$ has a more potent antioxidative effect than luteolin. $Luteolin-7-O-{\beta}-D-glucuronopyranoside$ is a promising drug for the treatment of reflux esophagitis and gastritis.

Keywords

References

  1. Alvarez, A., Pomar, F., Sevilla, and Montero, M. J., Gastric antisecretory and antiulcer activities of an ethanolic extract of Bidens pilosa L. var. radiata Schult. Bip. J. Ethnopharmacol., 67, 333-340 (1999) https://doi.org/10.1016/S0378-8741(99)00092-6
  2. Bell, N. J., Burget, D., Howden, C. W., Wilkinson, J., and Hunt, R. H., Appropriate acid suppression for the management of gastro-oesophageal reflux disease. Digestion. 51 Suppl 1, 59-67 (1992) https://doi.org/10.1159/000200917
  3. Bell, N. J. and Hunt, R. H., Role of gastric acid suppression in the treatment of gastro-oesophageal reflux disease. Gut., 33, 118-124, (1992) https://doi.org/10.1136/gut.33.1.118
  4. Biancani, P., Sohn, U. D., Rich, H. G., Harnett, K. M., and Behar, J., Signal transduction pathways in esophageal and lower esophageal sphincter circular muscle. Am. J. Med., 103, 23S-28S (1997) https://doi.org/10.1016/S0002-9343(97)00316-1
  5. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem., 72, 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  6. Buege, J. A. and Aust, S. D., Microsomal lipid peroxidation. Methods Enzymol., 52, 302-310 (1978) https://doi.org/10.1016/S0076-6879(78)52032-6
  7. Gambhir, S. S., Goel, R. K., and Das Gupta, G., Antiinflammatory & anti-ulcerogenic activity of amentoflavone. Indian J. Med. Res., 85, 689-693 (1987)
  8. Gerritsen, M. E., Carley, W. W., Ranges, G. E., Shen, C. P., Phan, S. A., Ligon, G. F., and Perry, C. A., Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am. J. Pathol., 147, 278-292, (1995)
  9. Haegele, A. D., Briggs, S. P., and Thompson, H. J., Antioxidant status and dietary lipid unsaturation modulate oxidative DNA damage. Free Radic Biol. Med., 16, 111-115 (1994) https://doi.org/10.1016/0891-5849(94)90247-X
  10. Hollman, P. C. and Katan, M. B., Bioavailability and health effects of dietary flavonols in man. Arch Toxicol Suppl., 20, 237-248 (1998)
  11. Hollman, P. C., van Trijp, J. M., Buysman, M. N., van der Gaag, M. S., Mengelers, M. J., de Vries, J. H., and Katan, M. B., Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett., 418, 152-156 (1997) https://doi.org/10.1016/S0014-5793(97)01367-7
  12. Ito, M., Suzuki, Y., and Ishihara, M., Anti-ulcer effects of antioxidants: effect of probucol. Eur. J. Pharmacol., 354, 189- 196 (1998) https://doi.org/10.1016/S0014-2999(98)00448-8
  13. Jung, S. Y., Choi, S., Ko, Y. S., Park, C. S., Oh, S., Koh, S. R., Oh, U., Oh, J. W., Rhee, M. H., and Nah, S. Y., Effects of ginsenosides on vanilloid receptor (VR1) channels expressed in Xenopus oocytes. Mol Cells., 12, 342-346 (2001)
  14. Kvietys, P. R., Twohig, B., Danzell, J., and Specian, R. D., Ethanol-induced injury to the rat gastric mucosa. Role of neutrophils and xanthine oxidase-derived radicals. Gastroenterology, 98, 909-920 (1990) https://doi.org/10.1016/0016-5085(90)90015-S
  15. Lewis, D. A., Anti-inflammatory drugs from plant and marine sources. Agents Actions Suppl., 27, 3-373 (1989) https://doi.org/10.1007/BF02222183
  16. Middleton, E. Jr., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev., 52, 673-751 (2000)
  17. Min, Y. S., Yim, S. H., Bai, K. L., Choi, H. J., Jeong, J. H., Song, H. J., Park, S. Y., Ham, I., Whang, W. K., and Sohn, U. D., The effects of apigenin-7-O-${\beta}$-D-glucuronopyranoside on reflux oesophagitis and gastritis in rats. Auton Autacoid Pharmacol., 25, 85-91 (2005) https://doi.org/10.1111/j.1474-8673.2005.00332.x
  18. Nakamura, K., Ozawa, Y., Furuta, Y., and Miyazaki, H., Effects of sodium polyacrylate (PANa) on acute esophagitis by gastric juice in rats. Jpn. J. Pharmacol., 32, 445-456 (1982) https://doi.org/10.1254/jjp.32.445
  19. Naya, M. J., Pereboom, D., Ortego, J., Alda, J. O., and Lanas, A., Superoxide anions produced by inflammatory cells play an important part in the pathogenesis of acid and pepsin induced oesophagitis in rabbits. Gut., 40, 175-181 (1997) https://doi.org/10.1136/gut.40.2.175
  20. Okabe, S., Takinami, Y., Iwata, K., and Yanagawa, T., Mucosal protective effect of leminoprazole on reflux esophagitis induced in rats. Jpn. J. Pharmacol., 69, 317-323, (1995) https://doi.org/10.1254/jjp.69.317
  21. Panes, J., Gerritsen, M. E., Anderson, D. C., Miyasaka, M., and Granger, D. N., Apigenin inhibits tumor necrosis factorinduced intercellular adhesion molecule-1 upregulation in vivo. Microcirculation, 3, 279-286 (1996) https://doi.org/10.3109/10739689609148302
  22. Parmar, N. S. and Hennings, G., The gastric antisecretory activity of 3-methoxy-5,7,3'4'-tetrahydroxyflavan (ME)--a specific histidine decarboxylase inhibitor in rats. Agents Actions., 15, 143-145 (1984) https://doi.org/10.1007/BF01972340
  23. Pihan, G., Regillo, C., and Szabo, S., Free radicals and lipid peroxidation in ethanol- or aspirin-induced gastric mucosal injury. Dig. Dis. Sci., 32, 1395-1401, (1987) https://doi.org/10.1007/BF01296666
  24. Stein, H. J., Hinder, R. A., and Oosthuizen, M. M., Gastric mucosal injury caused by hemorrhagic shock and reperfusion: protective role of the antioxidant glutathione. Surgery, 108, 467-473; discussion 473-464 (1990)
  25. Wetscher, G. J., Perdikis, G., Kretchmar, D. H., Stinson, R. G., Bagchi, D., Redmond, E. J., Adrian, T. E., and Hinder, R. A., Esophagitis in Sprague-Dawley rats is mediated by free radicals. Dig, Dis, Sci., 40, 1297-1305 (1995) https://doi.org/10.1007/BF02065542