Inhibitory Effect of Siderophore Purified from Burkholderia sp. CAS-5 on the Matrix Metalloproteinase-2 (Gelatinase A)

Burkholderia sp. CAS-5 균으로 부터 생산된 시드로포어의 Matrix metalloproteinase-2(Gelatinase A) 억제 활성

  • 김경자 (순천향대 자연과학대학 생명공학과)
  • Published : 2006.08.31

Abstract

Matrix metalloproteinase-2 is known to be involved in pathological processes such as tumor invasion or rheumatoid arthritis. A soil microorganism producing siderophore under low iron stress $(up\;to\;5\;{\mu}m\;of\;iron)$ was identified as Burkholderia sp. Hydroxamate type siderophore produced by Burkholderia sp. CAS-5 was partially purified. MMP inhibitory activity of siderophore was confirmed by gelatin zymography. The $Zn^{2+}-chelating$ activity of siderophore correlated with the inhibition of MMP-2 activity.

Keywords

References

  1. Chen, W. T. : Membrane proteases : roles in tissue remodeling and tumor invasion. Curr. Opin. Cell Biol. 4, 802 (1992) https://doi.org/10.1016/0955-0674(92)90103-J
  2. Gehrmann, M., Briknarova, K., Banyai, L., Patthy, L. and Llinas, M. : The col-1 module of human matrix metalloproteinase-2 (MMP-2): structural/functional relatedness between gelatin-binding fibronectin type II modules and lysine-binding single domains. Biol. Chem. 383, 137 (2002) https://doi.org/10.1515/BC.2002.014
  3. Sternlicht, M. D. and Werb, Z. : How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463 (2001)
  4. Visse, R. and Nagase, H. : Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827 (2003) https://doi.org/10.1161/01.RES.0000070112.80711.3D
  5. Kai, H., Ikeda, H., Yasukawa, H., Kai, M., Seki, Y. and Kuwahara, F. : Peripheral blood levels of matrix metallopro-teases-2 and -9 are elevated in patients with acute coronary syndromes. J. Am. Coll. Cardiol. 32, 368 (1998) https://doi.org/10.1016/S0735-1097(98)00250-2
  6. Ye, S. : Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol. 1 19, 235 (2000)
  7. Riquelme, M. : Fungal siderophores in plant-microbe interactions. Microbiologia Sem. 12, 537 (1996)
  8. Pyo, R., Lee, J. K., Shipley, J. M., Curci, J. A., Mao, D. and Ziporin, S. J. : Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 105, 1641 (2000) https://doi.org/10.1172/JCI8931
  9. Stetler-Stevenson, W. G., Liotta, L. and Kleiner, D. E. : Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 15, 1434 (1993)
  10. Trexler, M., Briknarova, K., Gehrmann, M., Llinas, M. and Patthy, M. : Peptide ligands for the fibronectin type II modules of matrix metalloproteinase 2 (MMP-2). J. Biol. Chem. 278, 12241 (2003) https://doi.org/10.1074/jbc.M210116200
  11. Overall, C. M. and Lopez-Otin, C. : Strategies for MMP inhibition in cancer: innovations for the post-trial era Nat. Rev. Cancer. 2, 657 (2002) https://doi.org/10.1038/nrc884
  12. Hoekstra, R., Eskens, F. A. and Verweij, J. : Matrix metalloproteinase inhibitors: current developments and future perspectives. The Oncologist 6, 415 (2001) https://doi.org/10.1634/theoncologist.6-5-415
  13. Ramnath, N. and Creaven, P. J. : Matrix metalloproteinase inhibitors. Curr. Oncol. Rep. 6, 96 (2004) https://doi.org/10.1007/s11912-004-0020-7
  14. Berton, A., Rigot, V., Huet, E., Decarme, M., Eeckhout, Y., Patthy, L. and Godeau, G. : Involvement of fibronectin type II repeats in the efficient inhibition of gelatinases A and B by long-chain unsaturated fatty acids. J. Biol. Chem. 276, 20458 (2001) https://doi.org/10.1074/jbc.M011664200
  15. Shinozaki, Y., Akutsu-Shigeno, Y., Nakjima-Kambe, T., Nakabara, T. and Uchiyama, H. : Inhibition of matrix metalloproteinase-2 activity by siderophore of Pseudomonas species. Appl. Microbiol. Biotechnol. 64, 840 (2004) https://doi.org/10.1007/s00253-003-1521-2
  16. Jani, M., Tordai, H., Trexler, M., Banyai, L. and Patthy, L. : Hydroxamate-based peptide inhibitors of matrix metalloprotease 2. Biochimie. 87, 385 (2005) https://doi.org/10.1016/j.biochi.2004.09.008
  17. Hofte, M. : Classes of microbial siderophores. In: L. L. Barton and B.C. Heming, Editors, Iron Chelation in Plants and Soil Microorganisms, Academic Press, New York, 326 (1993)
  18. Chincholkar, S. B., Chaudhari, B. L., Talegaonkar, S. K. and Kothari. R. M. : Microbial iron chelators: a tool for sustainable agriculture. In: R. K. Upadhayay, K. G. Mukherji and B. P. Chamola, Editors, Biocontrol Potential and Their Exploration in Crop Disease Management vol. I, Kluwer Academic, New York, 4970 (2000)
  19. Dave, B. P. and Dube, H. C. : Regulation of siderophore production by iron Fe(III) in certain fungi and fluorescent Pseudomonads. Ind. J. Exptl. Biol. 38, 297 (2000)
  20. Jalal, M. A. F. and Helm, V. D. : Isolation and spectroscopic identification of fungal siderophores. In: G. Winkelmann, Editor, Handbook of Microbial Iron Chelates, CRC Press, Boca Raton, 235 (1991)
  21. Payne, S. : Detection, isolation and characterization of siderophores. In: Methods in Enzymology. Academic Press, Inc. NY. 235, 329 (1994)
  22. Raaska, L. and Sandholm, T. M. : Effects of iron level on the antagonistic action of siderophores from non-pathogenic Staphylococcus spp. Journal of Industrial Microbiology 15, 480 (1995) https://doi.org/10.1007/BF01570018
  23. Handsley, M. and Edwards, D. R. : Metalloproteinases and their inhibitors in tumor angiogenesis. Int. J. Cancer. 115, 849 (2005) https://doi.org/10.1002/ijc.20945
  24. Kloepper, J. W., Leong, J. Teintz, M. and Schroth, M. N. : Pseudomonas siderophores : a mechanism explaining disease suppressive soil. Curr. Microbiol. 4, 317 (2000)
  25. Milagres, A. M. F., Machuca, A. and Napoleao, D. : Detection of siderophore production from several fungi and bacteria by a modification of chrome Azurol S (CAS) agar plate assay. J. Microbiol. Meth. 37, 16 (1999)
  26. Schwyn, R. and Neiland, J. B. : Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160, 4756 (1987)
  27. Arnow, L. E. : Colorimetric determination of the components of 3,4-dihydroxy phenylalanine tyrosine mixtures. J. Biol. Chem. 118, 531 (1937)
  28. Csaky, T. Z. : An estimation of bound hydroxylamine in biological materials, Acta Chem. Scand. 2, 450 (1937) https://doi.org/10.3891/acta.chem.scand.02-0450
  29. Kerkvliet, E., Jansen, I., Schoenmaker, T., Docherty, A., Beertsen, W. and Everts, V. : Low molecular weight inhibitors of matrix metalloproteinases can enhance the expression of matrix metalloproteinase-2 (gelatinase A) without inhibiting its activation. Cancer 97, 1582 (2003) https://doi.org/10.1002/cncr.11193
  30. Atkin, C., Neilands, J. and Phaff, H. : Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporodiobolus, and Sporobolomyces and a new alanine-containing ferrichrome from Criptcoccus melibiosum. J. Bacteriol. 103, 722 (1970)
  31. Kintu, K., Dave, B. P. and Dube, H. C. : Detection and chemical characterization of siderophores produced by certain fungi. Ind. J. Microbiol. 41, 879 (2001)
  32. Loper, J. : Molecular and biochemical bases for activities of biological control agents: the role of siderophores. In: New Directions in Biological Control: Alternatives for Suppresing Agricultural Pests and Diseases Alan R. Liss, New York, 735 (1990)