혼합소스 HVPE에 의해 성장된 In(Al)GaN 층의 특성

Characterization of In(Al)GaN layer grown by mixed-source hydride vapor phase epitaxy

  • 황선령 (한국해양대학교 반도체물리학과) ;
  • 김경화 (한국해양대학교 반도체물리학과) ;
  • 장근숙 (한국해양대학교 반도체물리학과) ;
  • 전헌수 (한국해양대학교 반도체물리학과) ;
  • 최원진 (한국해양대학교 반도체물리학과) ;
  • 장지호 (한국해양대학교 반도체물리학과) ;
  • 김홍승 (한국해양대학교 반도체물리학과) ;
  • 양민 (한국해양대학교 반도체물리학과) ;
  • 안형수 (한국해양대학교 반도체물리학과) ;
  • 배종성 (한국기초과학지원연구원 부산분소) ;
  • 김석환 (안동대학교 물리학과)
  • Hwang, S.L. (Department of Applied Sciences, Korea Maritime University) ;
  • Kim, K.H. (Department of Applied Sciences, Korea Maritime University) ;
  • Jang, K.S. (Department of Applied Sciences, Korea Maritime University) ;
  • Jeon, H.S. (Department of Applied Sciences, Korea Maritime University) ;
  • Choi, W.J. (Department of Applied Sciences, Korea Maritime University) ;
  • Chang, J.H. (Department of Applied Sciences, Korea Maritime University) ;
  • Kim, H.S. (Department of Applied Sciences, Korea Maritime University) ;
  • Yang, M. (Department of Applied Sciences, Korea Maritime University) ;
  • Ahn, H.S. (Department of Applied Sciences, Korea Maritime University) ;
  • Bae, J.S. (Busan Branch, Korea Basic Science Institute) ;
  • Kim, S.W. (Department of Physics, Andong National University)
  • 발행 : 2006.08.31

초록

혼합소스 HVPE(hydride vapor phase epitaxy) 방법을 이용하여 InGaN 층을 GaN 층이 성장된 사파이어 (0001) 기판 위에 성장하였다. InGaN 층을 성장하기 위해 금속 In에 Ga을 혼합하여 III족 소스로 이용하였으며 V족 소스로는 $NH_3$를 이용하였다. InGaN층은 금속 In에 Ga을 혼합한 소스와 HCl을 흘려 반응한 In-Ga 염화물이 다시 $NH_3$와 반응하도록 하여 성장하였다. XPS 측정을 통해 혼합소스 HVPE 방법으로 성장한 층이 InGaN 층임을 확인할 수 있었다. 선택 성장된 InGaN 층의 In 조성비는 PL과 CL을 통해서 분석하였다. 그 결과 In 조성비는 약 3%로 평가되었다. 또한, 4원 화합물인 InAlGaN 층을 성장하기 위해 In 금속에 Ga과 Al을 혼합하여 III족 소스로 사용하였다. 본 논문에서는 혼합소스 HVPE 방법에 의해 III족 소스물질로 금속 In에 Ga(Al)을 혼합한 소스를 이용하여 In(Al)GaN층을 성장할 수 있음을 확인할 수 있었다.

InGaN layers on GaN templated sapphire (0001) substrates were grown by mixed-source hydride vapor phase epitaxy (HVPE) method. In order to get InGaN layers, Ga-mixed In metal and $NH_3$ gas were used as group III and group V source materials, respectively. The InGaN material was compounded from chemical reaction between $NH_3$ and indium-gallium chloride farmed by HCl flowed over metallic In mixed with Ga. The grown layers were confirmed to be InGaN ternary crystal alloys by X-ray photoelectron spectroscopy (XPS). In concentration of the InGaN layers grown by selective area growth (SAG) method was investigated by the photoluminescence (PL) and cathodoluminescence (CL) measurements. Indium concentration was estimated to be in the range 3 %. Moreover, as a new attempt in obtaining InAlGaN layers, the growth of the thick InAlGaN layers was performed by putting small amount of Ga and Al into the In source. We found the new results that the metallic In mixed with Ga (and Al) as a group III source material could be used in the growth process of the In(Al)GaN layers by the mixed-source HVPE method.

키워드

참고문헌

  1. S. Nakamura and G. Fasol, The blue laser diode, Springer, Berlin (1997)
  2. Y.J. Yu, M.Y. Ryu, P.W. Yu, D.J. Kim and S.J. Park, 'Optical investigation of InGaN/GaN quantum well structures with various barrier widths', J. Korean Phys. Soc. 38 (2001) 134
  3. H.M. Kim, J.S. Choi, J.E. Oh and T.K. Yoo, 'Cathodoluminescence characterization of GaN thick films grown by using the HVPE method', J. Korean Phys. Soc. 37 (2000) 956 https://doi.org/10.3938/jkps.37.956
  4. S. Strite and H. Morkoc, 'GaN, AIN, and InN : A review', J. Vac. Sci. Technol. B 10 (1992) 1237 https://doi.org/10.1116/1.585897
  5. S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, 'High-brightness InGaN blue, green and yellow lightemitting diodes with quantum well structures', Jpn. J Appl. Phys. 34 (1995) L 797 https://doi.org/10.1143/JJAP.34.L797
  6. H. Selk, M. Amirsawadkouhi, P.L. Ryder, T. Bottcher S. Einfeldt, D. Hommel, F. Bertram and J. Christen 'Compositional inhomogeneities in InGaN studied by transmission electron microscopy and spatially resolved cathodoluminescence', Mater. Sci. Eng. B59 (1999) 279
  7. H.K. Cho, J.Y. Lee, K.S. Kim and G.M. Yang, 'Superlattice- like stacking fault and phase separation of $In_{x}Ga_{1-X}N$ grown on sapphire substrate by metalorganic chemical vapor deposition', Appl. Phys. Lett. 77 (2000) 247 https://doi.org/10.1063/1.126939
  8. M. Shimizu, Y. Kawaguchi, K. Hiramatsu amd N. Sawaki, 'Metalorganic vapor phase epitaxy of thick InGaN on sapphire substrate', Jpn. J. Appl. Phys. 36(6A) (1997) 3381 https://doi.org/10.1143/JJAP.36.3381
  9. S. Sanorpim, J. Wu, K. Onabe and Y. Shiraki, 'Effects of growth temperature in selective-area growth of cubic GaN on GaAs (100) by MOVPE', J. Cryst. Growth 237-239 (2002) 1124 https://doi.org/10.1016/S0022-0248(01)02068-1
  10. S. Bohyama, H. Miyake, K. Hiramatsu, Y. Tsuchida and T. Maeda, 'Freestanding GaN substrate by advanced facet-controlled epitaxial lateral overgrowth technique with masking side facets', Jpn. J. Appl. Phys. 44 (2005) L24 https://doi.org/10.1143/JJAP.44.L24
  11. H.S. Ahn, K.H. Kim, M. Yang, J.Y. Yi, H.J. Lee, J.H. Chang, H.S. Kim, S.W. Kim, S.C. Lee, Y. Honda, M. Yamaguchi and N. Sawaki, 'Characterization of AIGaN layer with high Al content grown by mixed-source HVPE', Phys. Stat. Sol.(a) 202 (2005) 1048 https://doi.org/10.1002/pssa.200420001
  12. K.P. O'Donnell, I. Fernandez-Torrente, P.R. Edwards and R.W. Martin, 'The composition dependence of the $In_{x}Ga_{1-X}N$ bandgap', J. Cryst. Growth 269 (2004) 100 https://doi.org/10.1016/j.jcrysgro.2004.05.040