References
- Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1993; pp 1-364
- Maruoka, K.; Yamamoto, H. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993; pp 413-440
- Mikami, K. In Advances in Catalytic Process; Doyle, M. P., Ed.; JAI Press: Greenwich, 1995; pp 1-44
- Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207 https://doi.org/10.1021/cr00022a010
- Hoppe, D.; Roush, W. R.; Thomas, E. J. In Stereoselective Synthesis; Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E. Eds.; Thieme: Stuttgart, 1996; Vol. 3, pp 1357-1602
- Herold, T.; Schrott, U.; Hoffmann, R. W. Chem. Ber. 1981, 114, 359 https://doi.org/10.1002/cber.19811140138
- Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1982, 21, 555 https://doi.org/10.1002/anie.198205553
- Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763 https://doi.org/10.1021/cr020050h
- Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; pp 299-401
- Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; pp 403-490
- Weigand, S.; Brückner, R. Chem. Eur. J. 1996, 2, 1077 https://doi.org/10.1002/chem.19960020907
- Almendros, P.; Gruttadauria, M.; Helliwell, M.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1997, 2549
- Majumdar, K. K. Tetrahedron: Asymmetry 1997, 8, 2079 https://doi.org/10.1016/S0957-4166(97)00200-0
- Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708 https://doi.org/10.1021/ja020338o
- Gauthier, D. R., Jr.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2363 https://doi.org/10.1002/anie.199623631
- Duthaler, R. O.; Hafner, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 43 https://doi.org/10.1002/anie.199700431
- Yanagisawa, A.; Kageyamam, H.; Nakatsuka, Y.; Asakawa, K.; Matsumoto, Y.; Yamamoto, H. Angew. Chem., Int. Ed. Engl. 1999, 39, 3701
- Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2000, 122, 12021 https://doi.org/10.1021/ja002060a
- Short, J. D.; Attenoux, S.; Berrisford, D. J. Tetrahedron Lett. 1997, 38, 2351 https://doi.org/10.1016/S0040-4039(97)00312-2
- Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488 https://doi.org/10.1021/ja016552e
- Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S.-i. J. Am. Chem. Soc. 1998, 120, 6419 https://doi.org/10.1021/ja981091r
- Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 125, 2208 https://doi.org/10.1021/ja021280g
- Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron 1998, 39, 2767 https://doi.org/10.1016/S0040-4039(98)00334-7
- Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron 1999, 55, 977 https://doi.org/10.1016/S0040-4020(98)01097-7
- Malkov, A. V.; Oraini, M.; Pernazza, D.; Muir, K. W.; Langer, V.; Meghani, P.; Kocovsky, P. Org. Lett. 2002, 4, 1047 https://doi.org/10.1021/ol025654m
- Shimada, T.; Kina, A.; Ikeda, S.; Hayashi, T. Org. Lett. 2002, 4, 2799 https://doi.org/10.1021/ol026376u
- Angell, R. M.; Barrett, A. G. M.; Braddock, D. C.; Swallow, S.; Vickery, B. D. Chem. Commun. 1997, 919
- Chataigner, I.; Piarulli, U.; Gennari, C. Tetrahedron Lett. 1999, 40, 3633 https://doi.org/10.1016/S0040-4039(99)00493-1
- Denmark, S. E.; Fu, J. Org. Lett. 2002, 4, 1951 https://doi.org/10.1021/ol025971t
- Ishihaea, K.; Mouri, M.; Gao, Q.; Maruyama, T.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 11490 https://doi.org/10.1021/ja00077a054
- Marshall, J. A.; Tang, Y. Synlett 1997, 653
- Marshall, J. A.; Palovich, M. R. J. Org. Chem. 1998, 63, 4381 https://doi.org/10.1021/jo980145c
- Brunel, J. M. Chem. Rev. 2005, 105, 857 https://doi.org/10.1021/cr040079g
- Aoki, S.; Mikami, K.; Terada, M.; Nakai, T. Tetrahedron 1993, 49, 1783 https://doi.org/10.1016/S0040-4020(01)80535-4
- Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001 https://doi.org/10.1021/ja00068a079
- Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467 https://doi.org/10.1021/ja00071a074
- Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543 https://doi.org/10.1021/jo00076a005
- Keck, G. E.; Yu, T. Org. Lett. 1999, 1, 289 https://doi.org/10.1021/ol990603j
- Keck, G. E.; Covel, J. A.; Schiff, T.; Yu, T. Org. Lett. 2002, 4, 1189 https://doi.org/10.1021/ol025645d
- Sharpless, K. B.; Berrisford, D. J.; Bolm, C. Angew. Chem. Int. Ed. Engl. 1995, 34, 1059 https://doi.org/10.1002/anie.199510591
- Ostwald, R.; Chavant, P.-Y.; Stadtmuller, H.; Knochel, P. J. Org. Chem. 1994, 59, 4243
- Langer, F.; Schwink, L.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. J. Org. Chem. 1996, 61, 8229 https://doi.org/10.1021/jo961129n
- Mukaiyama, T. Aldrichimica Acta 1996, 29, 59
- Mikami, K.; Matsukawa, S. Nature 1997, 385, 613 https://doi.org/10.1038/385613a0
- Yu, C.-M.; Jung, W.-H.; Choi, H.-S.; Lee, J.; Lee, J.-K. Tetrahedron Lett. 1995, 36, 8255 https://doi.org/10.1016/0040-4039(95)01771-9
- Yu, C.-M.; Choi, H.-S.; Lee, J.-K.; Yoon, S.-K. J. Org. Chem. 1997, 62, 6687 https://doi.org/10.1021/jo9707747
- Yu, C.-M.; Lee, J.; Chun, K.; Lee, J.; Lee, Y. J. Chem. Soc. Perkin Trans. 1 2000, 3622
- Yu, C.-M.; Lee, J.-Y.; Chun, K.; Choi, I.-K.; Kang, S. Chem. Commun. 2001, 2698
- Yu, C.-M.; Lee, J.; Kim, J.-M.; Lee, S.-K. Chem. Commun. 2003, 2036
- Yu, C.-M.; Choi, H.-S.; Jung, W.-H.; Lee, S.-S. Tetrahedron Lett. 1996, 37, 7095 https://doi.org/10.1016/0040-4039(96)01582-1
- Yu, C.-M.; Choi, H.-S.; Jung, W.-H.; Kim, H.-J.; Shin, J. Chem. Commun. 1997, 761
- Yu, C.-M.; Choi, H.-S.; Jung, W.-H.; Kim, H.-J.; Lee, J.-K. Bull. Korean Chem. Soc. 1997, 18, 471
- Yu, C.-M.; Choi, H.-S.; Yoon, S.-K.; Jung, W.-H. Synlett 1997, 889
- Wender, P. A.; Baryza, J. L.; Brenner, S. E.; Clarke, M. O.; Gamber, G. G.; Horan, J. C.; Jessop, T. C.; Kan, C.; Pattabiraman, K.; Williams, T. J. Pure & Appl. Chem. 2003, 75, 143 https://doi.org/10.1351/pac200375020143
- Kim, G.; Shim, J. H.; Kim, J. H. Bull. Korean Chem. Soc. 2003, 24, 1832 https://doi.org/10.5012/bkcs.2003.24.12.1832
- Wender, P. A.; Baryza, J. L.; Bennett, C. E.; Bi, F. C.; Brenner, S. E.; Clarke, M. O.; Horan, J. C.; Kan, C.; Lacoste, E.; Lippa, B.; Nell, P. G.; Turner, M. J. Am. Chem. Soc. 2002, 124, 13648 https://doi.org/10.1021/ja027509+
- Marshall, J. A. Chem. Rev. 2000, 100, 3163 https://doi.org/10.1021/cr000003u
- Keck, G. E.; Krishnamurthy, D.; Chen, X. Tetrahedron Lett. 1994, 35, 8323 https://doi.org/10.1016/S0040-4039(00)74397-8
- Yu, C.-M.; Yoon, S.-K.; Choi, H.-S.; Baek, K. Chem. Commun. 1997, 763
- Yu, C.-M.; Kim, J.-M.; Shin, M.-S.; Cho, D. Tetrahedron Lett. 2003, 44, 5487 https://doi.org/10.1016/S0040-4039(03)01033-5
- Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S. J. Am. Chem. Soc. 2001, 123, 12095 https://doi.org/10.1021/ja011983i
- Yamamoto, H. In Comprehensive Organic Synthesis; Heathcock, C. H., Ed.; Pergamon: Oxford, 1991; Vol. 2, pp 81-98
- Bruneau, C.; Dixneuf, P. H. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W., Eds.; Elsevier Science: Oxford, 1995; Vol. 1, pp 953-998
- Marshall, J. A.; Yu, R. H.; Perkin, J. P. J. Org. Chem. 1995, 60, 5550 https://doi.org/10.1021/jo00122a040
- Marshall, J. A. Chem. Rev. 1996, 96, 31 https://doi.org/10.1021/cr950037f
- Corey, E. J.; Yu, C.-M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112, 878 https://doi.org/10.1021/ja00158a064
- Brown, H. C.; Kulkarni, S. V. Tetrahedron Lett. 1996, 37, 4125-4128 https://doi.org/10.1016/0040-4039(96)00821-0
- Yu, C.-M.; Yoon, S.-K.; Baek, K.; Lee, J.-Y. Angew. Chem. Int. Ed. 1998, 37, 2392 https://doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2392::AID-ANIE2392>3.0.CO;2-D
- Soundararajan, R.; Li, G.; Brown, H. C. J. Org. Chem. 1996, 61, 100 https://doi.org/10.1021/jo9513976
- Hatakeyama, S.; Sugawara, K.; Takano, S. J. Chem. Soc. Chem. Commun. 1991, 1533
- Yu, C.-M.; Yoon, S.-K.; Lee, S.-J.; Lee, J.-Y.; Kim, S. S. Chem. Commun. 1998, 2749
- Yu, C.-M.; Lee, S.-J.; Jeon, M. J. Chem. Soc., Perkin Trans. 1 1999, 3557
- Yu, C.-M.; Jeon, M.; Lee, J.-Y.; Jeon, J. Eur. J. Org. Chem. 2001, 6, 1143
- Flamme, E.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 13644 https://doi.org/10.1021/ja028055j
- Wang, X.; Meng, Q.; Nation, A. J.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 10672 https://doi.org/10.1021/ja027655f
- Nakamura, M.; Hatekeyama, T.; Hara, K.; Hukudome, H.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 14344 https://doi.org/10.1021/ja044878s
- Halland, H.; Aburel, N.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2004, 43, 1272
- Yu, C.-M.; Lee, J.-Y.; So, B.; Hong, J. Angew. Chem. Int. Ed. 2002, 41, 161 https://doi.org/10.1002/1521-3773(20020104)41:1<161::AID-ANIE161>3.0.CO;2-N
- Yu, C.-M.; Hwang, H.-I.; Jung, H. K. unpublished result
- Yu, C.-M.; Kim, J.-M.; Shin, M.-S.; Yoon, M.-O. Chem. Commun. 2003, 1744
- Yu, C.-M.; Shin, M.-S.; Cho, E.-Y. Bull. Korean Chem. Soc. 2004, 25, 1625 https://doi.org/10.5012/bkcs.2004.25.11.1625
- Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. Chem. Rev. 1996, 96, 635 https://doi.org/10.1021/cr950065y
- Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49 https://doi.org/10.1021/cr950016l
- Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813 https://doi.org/10.1021/cr980054f
- Santelli, M.; Pons, J.-M. Lewis Acids and Selectivity in Organic Synthesis; CRC Press: Boca Raton, 1996; pp 163-176
- Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067 https://doi.org/10.1021/cr000666b
- Tsuji, Y.; Mukai, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1989, 369, C51 https://doi.org/10.1016/0022-328X(89)85196-4
- Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.-a.; Watanabe, Y. Organometallics 1995, 14, 1945 https://doi.org/10.1021/om00004a055
- Yu, C.-M.; Lee, S.; Hong, Y.-T.; Yoon, S.-K. Tetrahedron Lett. 2004, 45, 6557 https://doi.org/10.1016/j.tetlet.2004.07.032
- Yu, C.-M.; Hong, Y.-T.; Lee, J. J. Org. Chem. 2004, 69, 8506 https://doi.org/10.1021/jo049252z
- Yu, C.-M.; Hong, Y.-T.; Yoon, S.-K.; Lee, J. Synlett 2004, 169
- Yu, C.-M.; Yoon, S.-K.; Hong, Y.-T.; Kim, J.-M. Chem. Commun. 2004, 1840
- Yu, C.-M.; Kang, S.; Hong, Y.-T.; Lee, J.-H.; Kim, W.-Y.; Lee, I. Org. Lett. 2003, 5, 2813 https://doi.org/10.1021/ol034787k
- Yu, C.-M.; Youn, J.; Lee, M.-K. Org. Lett. 2005, 7, 3733 https://doi.org/10.1021/ol0513701
- Montgomery, J. Angew. Chem. Int. Ed. 2004, 43, 3890 https://doi.org/10.1002/anie.200300634
- Yu, C.-M.; Youn, J.; Yoon, S.-K.; Hong, Y.-T. Org. Lett. 2005, 7, 4507 https://doi.org/10.1021/ol051806c
- Aggarwal, V. K.; Davies, P. W.; Schmidt, A. T. Chem. Commun. 2004, 1232
- Alcazar, E.; Kassou, M.; Metheu, I.; Castillon, S. Eur. J. Org. Chem. 2000, 2285
- Chen, M.-J.; Narkuran, K.; Liu, R.-S. J. Org. Chem. 1999, 64, 8311 https://doi.org/10.1021/jo991077c
- Martin, V. S.; Rodriguez, C. M.; Martin, T. Org. Prep. Proc. Int. 1998, 30, 291 https://doi.org/10.1080/00304949809355291
- Yu, C.-M.; Youn, J.; Jung, J.-Y. Angew. Chem. Int. Ed. 2006, 45, 1553 https://doi.org/10.1002/anie.200503863
Cited by
- -Diastereo- and Enantioselective Carbonyl Crotylation from the Alcohol or Aldehyde Oxidation Level Employing a Cyclometallated Iridium Catalyst: α-Methyl Allyl Acetate as a Surrogate to Preformed Crotylmetal Reagents vol.131, pp.7, 2009, https://doi.org/10.1021/ja808857w
- -Diastereo- and Enantioselective Carbonyl (Hydroxymethyl)allylation from the Alcohol or Aldehyde Oxidation Level: Allyl Carbonates as Allylmetal Surrogates vol.132, pp.13, 2010, https://doi.org/10.1021/ja100949e
- -Diastereo- and Enantioselective Carbonyl (Trimethylsilyl)allylation from the Alcohol or Aldehyde Oxidation Level vol.132, pp.26, 2010, https://doi.org/10.1021/ja103299f
- -Dicarboxylates as Allyl Donors via Iridium-Catalyzed Transfer Hydrogenation vol.132, pp.6, 2010, https://doi.org/10.1021/ja9097675
- Double Diastereo- and Enantioselective Iridium-Catalyzed Crotylation of 1,3-Diols: Beyond Stepwise Carbonyl Addition in Polyketide Construction vol.133, pp.32, 2011, https://doi.org/10.1021/ja204570w
- A novel allylic transfer reaction of chirally modified 2-borylbutadiene: synthesis of chiral homoallenyl alcohols vol.47, pp.13, 2011, https://doi.org/10.1039/c0cc05751g
- Chiral-Anion-Dependent Inversion of Diastereo- and Enantioselectivity in Carbonyl Crotylation via Ruthenium-Catalyzed Butadiene Hydrohydroxyalkylation vol.134, pp.51, 2012, https://doi.org/10.1021/ja311208a
- Iridium-Catalyzed Allylation of Chiral β-Stereogenic Alcohols: Bypassing Discrete Formation of Epimerizable Aldehydes vol.14, pp.24, 2012, https://doi.org/10.1021/ol3030692
- Consecutive iridium catalyzed C–C and C–H bond forming hydrogenations for the diastereo- and enantioselective synthesis of syn-3-fluoro-1-alcohols: C–H (2-fluoro)allylation of primary alcohols vol.48, pp.39, 2012, https://doi.org/10.1039/c2cc31743e
- Total Synthesis of 6-Deoxyerythronolide B via C–C Bond-Forming Transfer Hydrogenation vol.135, pp.11, 2013, https://doi.org/10.1021/ja4008722
- Mechanism and Selectivity of Rhodium-Catalyzed 1:2 Coupling of Aldehydes and Allenes vol.135, pp.20, 2013, https://doi.org/10.1021/ja4014166
- )-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition vol.136, pp.34, 2014, https://doi.org/10.1021/ja505962w
- Polyketide construction via hydrohydroxyalkylation and related alcohol C–H functionalizations: reinventing the chemistry of carbonyl addition vol.31, pp.4, 2014, https://doi.org/10.1039/c3np70076c
- Diastereo- and Enantioselective Iridium Catalyzed Coupling of Vinyl Aziridines with Alcohols: Site-Selective Modification of Unprotected Diols and Synthesis of Substituted Piperidines vol.137, pp.24, 2015, https://doi.org/10.1021/jacs.5b04404
- )-Siloxyallylation vol.137, pp.51, 2015, https://doi.org/10.1021/jacs.5b12131
- -Prenylation via 1,3-Enyne Transfer Hydrogenation: Beyond Stoichiometric Carbanions in Enantioselective Carbonyl Propargylation vol.138, pp.16, 2016, https://doi.org/10.1021/jacs.6b02279
- Enantioselective Alcohol C–H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis vol.138, pp.17, 2016, https://doi.org/10.1021/jacs.6b02019
- Alkine als alternativer Einstieg in elektrophile und nukleophile Übergangsmetall-katalysierte Allylierungen vol.129, pp.38, 2017, https://doi.org/10.1002/ange.201704248
- -(α-Amino)allylation via Ruthenium Catalyzed Hydrogen Autotransfer: Use of an Acetylenic Pyrrole as an Allylmetal Pronucleophile vol.19, pp.18, 2017, https://doi.org/10.1021/acs.orglett.7b02336
- Asymmetric Allylation of Glycidols Mediated by Allyl Acetate via Iridium-Catalyzed Hydrogen Transfer vol.19, pp.5, 2017, https://doi.org/10.1021/acs.orglett.7b00343
- Catalytic Enantioselective Carbonyl Allylation and Propargylation via Alcohol-Mediated Hydrogen Transfer: Merging the Chemistry of Grignard and Sabatier vol.50, pp.9, 2017, https://doi.org/10.1021/acs.accounts.7b00308
- Alkynes as Electrophilic or Nucleophilic Allylmetal Precursors in Transition-Metal Catalysis vol.56, pp.38, 2017, https://doi.org/10.1002/anie.201704248
- Hydrogen-Mediated C−C Bond Formation: Stereo- and Site-Selective Chemical Synthesis Beyond Stoichiometric Organometallic Reagents pp.00212148, 2017, https://doi.org/10.1002/ijch.201700088
- Enantioselective Iridium-Catalyzed Phthalide Formation through Internal Redox Allylation of Phthalaldehydes vol.130, pp.5, 2018, https://doi.org/10.1002/ange.201712015
- Enantioselective Iridium-Catalyzed Phthalide Formation through Internal Redox Allylation of Phthalaldehydes vol.57, pp.5, 2018, https://doi.org/10.1002/anie.201712015
- Regulation of Stereoselectivity and Reactivity in the Inter- and Intramolecular Allylic Transfer Reactions vol.37, pp.35, 2006, https://doi.org/10.1002/chin.200635253
- A diastereoselective carbocyclisation of allene-hydrazones through the intramolecular allylic transfer reaction pp.47, 2007, https://doi.org/10.1039/b712856h
- Catalytic Carbonyl Addition through Transfer Hydrogenation: A Departure from Preformed Organometallic Reagents vol.48, pp.1, 2008, https://doi.org/10.1002/anie.200802938
- Katalytische Carbonyladdition durch Transferhydrierung: weg von vorab gebildeten Organometallreagentien vol.121, pp.1, 2008, https://doi.org/10.1002/ange.200802938
- Enantioselective Allylation, Crotylation, and Reverse Prenylation of Substituted Isatins: Iridium-Catalyzed CC Bond-Forming Transfer Hydrogenation vol.121, pp.34, 2009, https://doi.org/10.1002/ange.200902328
- Enantioselective Allylation, Crotylation, and Reverse Prenylation of Substituted Isatins: Iridium-Catalyzed CC Bond-Forming Transfer Hydrogenation vol.48, pp.34, 2009, https://doi.org/10.1002/anie.200902328
- Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency pp.47, 2009, https://doi.org/10.1039/b917243m
- alcohol-mediated hydrogen transfer vol.55, pp.7, 2019, https://doi.org/10.1039/C8CC09706B
- )–H functionalization mediated by organophotoredox and chiral chromium hybrid catalysis pp.2041-6539, 2019, https://doi.org/10.1039/C8SC05677C
- A Highly Diastereoselective Cyclocarbonylation of Allene-Aldehyde Mediated by Mo(CO)6: Synthesis of Bicyclic Lactones vol.28, pp.11, 2006, https://doi.org/10.5012/bkcs.2007.28.11.1921
- Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium-Catalyzed C−C Bond-Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones vol.130, pp.43, 2006, https://doi.org/10.1021/ja805356j
- Stereoselective Cylization of Allenoates Containing Carbonyl Functionalities Mediated Mo(CO)6: Synthesis of Canadensolide and Sporothriolide vol.30, pp.4, 2006, https://doi.org/10.5012/bkcs.2009.30.4.773
- Intramolecular Carbocyclization of Allenoate-aldehydes with Hexamethylditin Catalyzed by Palladium Complex: Synthesis of Cyclic Dienes vol.31, pp.3, 2006, https://doi.org/10.5012/bkcs.2010.31.03.559
- Iridium‐Catalyzed anti‐Diastereo‐ and Enantioselective Carbonyl (α‐Trifluoromethyl)allylation from the Alcohol or Aldehyde Oxidation Level vol.123, pp.18, 2006, https://doi.org/10.1002/ange.201008296
- Iridium‐Catalyzed anti‐Diastereo‐ and Enantioselective Carbonyl (α‐Trifluoromethyl)allylation from the Alcohol or Aldehyde Oxidation Level vol.50, pp.18, 2011, https://doi.org/10.1002/anie.201008296
- Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation vol.84, pp.8, 2006, https://doi.org/10.1351/pac-con-11-10-18
- Protecting‐Group‐Free Diastereoselective CC Coupling of 1,3‐Glycols and Allyl Acetate through Site‐Selective Primary Alcohol Dehydrogenation vol.125, pp.11, 2006, https://doi.org/10.1002/ange.201209863
- Total Synthesis of Cyanolide A in the Absence of Protecting Groups, Chiral Auxiliaries, or Premetalated Carbon Nucleophiles vol.125, pp.16, 2006, https://doi.org/10.1002/ange.201300843
- In situ Catalytic Generation of Allylcopper Species for Asymmetric Allylation: Toward 1H‐Isochromene Skeletons vol.125, pp.28, 2013, https://doi.org/10.1002/ange.201302027
- Protecting‐Group‐Free Diastereoselective CC Coupling of 1,3‐Glycols and Allyl Acetate through Site‐Selective Primary Alcohol Dehydrogenation vol.52, pp.11, 2006, https://doi.org/10.1002/anie.201209863
- Total Synthesis of Cyanolide A in the Absence of Protecting Groups, Chiral Auxiliaries, or Premetalated Carbon Nucleophiles vol.52, pp.16, 2013, https://doi.org/10.1002/anie.201300843
- In situ Catalytic Generation of Allylcopper Species for Asymmetric Allylation: Toward 1H‐Isochromene Skeletons vol.52, pp.28, 2006, https://doi.org/10.1002/anie.201302027
- Katalytische enantioselektive C‐H‐Funktionalisierung von Alkoholen durch redoxgesteuerte Addition an die Carbonylgruppe: Wasserstoff‐Ausleihe und Kohlenstoff‐Rückgabe vol.126, pp.35, 2006, https://doi.org/10.1002/ange.201403873
- Catalytic Enantioselective CH Functionalization of Alcohols by Redox‐Triggered Carbonyl Addition: Borrowing Hydrogen, Returning Carbon vol.53, pp.35, 2006, https://doi.org/10.1002/anie.201403873
- Diastereo‐ and Enantioselective Iridium Catalyzed Carbonyl (α‐Cyclopropyl)allylation via Transfer Hydrogenation vol.21, pp.37, 2006, https://doi.org/10.1002/chem.201502499
- Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls vol.137, pp.40, 2006, https://doi.org/10.1021/jacs.5b08019
- Ruthenium-Catalyzed Transfer Hydrogenation for C-C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs vol.374, pp.3, 2006, https://doi.org/10.1007/s41061-016-0028-0
- Acyclic Quaternary Carbon Stereocenters via Enantioselective Transition Metal Catalysis vol.117, pp.19, 2006, https://doi.org/10.1021/acs.chemrev.7b00385
- Catalytic Enantioselective Allylations of Acetylenic Aldehydes via 2-Propanol-Mediated Reductive Coupling vol.20, pp.13, 2018, https://doi.org/10.1021/acs.orglett.8b01776
- Successive Nucleophilic and Electrophilic Allylation for the Catalytic Enantioselective Synthesis of 2,4-Disubstituted Pyrrolidines vol.21, pp.8, 2006, https://doi.org/10.1021/acs.orglett.9b00508
- Total Synthesis of Clavosolide A via Asymmetric Alcohol‐Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction vol.131, pp.31, 2006, https://doi.org/10.1002/ange.201906259
- Total Synthesis of Clavosolide A via Asymmetric Alcohol‐Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction vol.58, pp.31, 2006, https://doi.org/10.1002/anie.201906259
- Direct Conversion of Primary Alcohols to 1,2-Amino Alcohols: Enantioselective Iridium-Catalyzed Carbonyl Reductive Coupling of Phthalimido-Allene via Hydrogen Auto-Transfer vol.141, pp.36, 2006, https://doi.org/10.1021/jacs.9b08715
- Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis vol.131, pp.40, 2006, https://doi.org/10.1002/ange.201905532
- Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis vol.58, pp.40, 2019, https://doi.org/10.1002/anie.201905532
- Co(III)-Catalyzed stereospecific synthesis of (E)-homoallylic alcohols with 4-vinyl-1,3-dioxan-2-ones: late-stage C-H homoallylation of indole derivatives vol.8, pp.16, 2006, https://doi.org/10.1039/d1qo00529d