DOI QR코드

DOI QR Code

Regulation of Stereoselectivity and Reactivity in the Inter- and Intramolecular Allylic Transfer Reactions

  • Yu, Chan-Mo (Department of Chemistry and Institute of Basic Sciences, Sungkyunkwan University) ;
  • Youn, Jin-soup (Department of Chemistry and Institute of Basic Sciences, Sungkyunkwan University) ;
  • Jung, Hee-Keum (Department of Chemistry and Institute of Basic Sciences, Sungkyunkwan University)
  • 발행 : 2006.04.20

초록

The preparation of enatiomerically enriched homoallylic alcohols through asymmetric addition of chiral allylic transfer reagents and allylating reagents with chiral catalysts to the carbonyl functionalities represents an important chemical transformation. Excellent progress has been made over past decade in the development and application of catalytic asymmetric allylic transfer reactions. In this account, our efforts for the various intermolecular allylic transfer reactions such as allylation, propargylation, allenylation, and dienylation utilizing accelerating strategy and sequential allylic transfer reactions to achieve multiple stereoselection mainly using transition metal catalysts are described.

키워드

참고문헌

  1. Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1993; pp 1-364
  2. Maruoka, K.; Yamamoto, H. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993; pp 413-440
  3. Mikami, K. In Advances in Catalytic Process; Doyle, M. P., Ed.; JAI Press: Greenwich, 1995; pp 1-44
  4. Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207 https://doi.org/10.1021/cr00022a010
  5. Hoppe, D.; Roush, W. R.; Thomas, E. J. In Stereoselective Synthesis; Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E. Eds.; Thieme: Stuttgart, 1996; Vol. 3, pp 1357-1602
  6. Herold, T.; Schrott, U.; Hoffmann, R. W. Chem. Ber. 1981, 114, 359 https://doi.org/10.1002/cber.19811140138
  7. Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1982, 21, 555 https://doi.org/10.1002/anie.198205553
  8. Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763 https://doi.org/10.1021/cr020050h
  9. Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; pp 299-401
  10. Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; pp 403-490
  11. Weigand, S.; Brückner, R. Chem. Eur. J. 1996, 2, 1077 https://doi.org/10.1002/chem.19960020907
  12. Almendros, P.; Gruttadauria, M.; Helliwell, M.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1997, 2549
  13. Majumdar, K. K. Tetrahedron: Asymmetry 1997, 8, 2079 https://doi.org/10.1016/S0957-4166(97)00200-0
  14. Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708 https://doi.org/10.1021/ja020338o
  15. Gauthier, D. R., Jr.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2363 https://doi.org/10.1002/anie.199623631
  16. Duthaler, R. O.; Hafner, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 43 https://doi.org/10.1002/anie.199700431
  17. Yanagisawa, A.; Kageyamam, H.; Nakatsuka, Y.; Asakawa, K.; Matsumoto, Y.; Yamamoto, H. Angew. Chem., Int. Ed. Engl. 1999, 39, 3701
  18. Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2000, 122, 12021 https://doi.org/10.1021/ja002060a
  19. Short, J. D.; Attenoux, S.; Berrisford, D. J. Tetrahedron Lett. 1997, 38, 2351 https://doi.org/10.1016/S0040-4039(97)00312-2
  20. Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488 https://doi.org/10.1021/ja016552e
  21. Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S.-i. J. Am. Chem. Soc. 1998, 120, 6419 https://doi.org/10.1021/ja981091r
  22. Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 125, 2208 https://doi.org/10.1021/ja021280g
  23. Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron 1998, 39, 2767 https://doi.org/10.1016/S0040-4039(98)00334-7
  24. Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron 1999, 55, 977 https://doi.org/10.1016/S0040-4020(98)01097-7
  25. Malkov, A. V.; Oraini, M.; Pernazza, D.; Muir, K. W.; Langer, V.; Meghani, P.; Kocovsky, P. Org. Lett. 2002, 4, 1047 https://doi.org/10.1021/ol025654m
  26. Shimada, T.; Kina, A.; Ikeda, S.; Hayashi, T. Org. Lett. 2002, 4, 2799 https://doi.org/10.1021/ol026376u
  27. Angell, R. M.; Barrett, A. G. M.; Braddock, D. C.; Swallow, S.; Vickery, B. D. Chem. Commun. 1997, 919
  28. Chataigner, I.; Piarulli, U.; Gennari, C. Tetrahedron Lett. 1999, 40, 3633 https://doi.org/10.1016/S0040-4039(99)00493-1
  29. Denmark, S. E.; Fu, J. Org. Lett. 2002, 4, 1951 https://doi.org/10.1021/ol025971t
  30. Ishihaea, K.; Mouri, M.; Gao, Q.; Maruyama, T.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 11490 https://doi.org/10.1021/ja00077a054
  31. Marshall, J. A.; Tang, Y. Synlett 1997, 653
  32. Marshall, J. A.; Palovich, M. R. J. Org. Chem. 1998, 63, 4381 https://doi.org/10.1021/jo980145c
  33. Brunel, J. M. Chem. Rev. 2005, 105, 857 https://doi.org/10.1021/cr040079g
  34. Aoki, S.; Mikami, K.; Terada, M.; Nakai, T. Tetrahedron 1993, 49, 1783 https://doi.org/10.1016/S0040-4020(01)80535-4
  35. Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001 https://doi.org/10.1021/ja00068a079
  36. Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467 https://doi.org/10.1021/ja00071a074
  37. Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543 https://doi.org/10.1021/jo00076a005
  38. Keck, G. E.; Yu, T. Org. Lett. 1999, 1, 289 https://doi.org/10.1021/ol990603j
  39. Keck, G. E.; Covel, J. A.; Schiff, T.; Yu, T. Org. Lett. 2002, 4, 1189 https://doi.org/10.1021/ol025645d
  40. Sharpless, K. B.; Berrisford, D. J.; Bolm, C. Angew. Chem. Int. Ed. Engl. 1995, 34, 1059 https://doi.org/10.1002/anie.199510591
  41. Ostwald, R.; Chavant, P.-Y.; Stadtmuller, H.; Knochel, P. J. Org. Chem. 1994, 59, 4243
  42. Langer, F.; Schwink, L.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. J. Org. Chem. 1996, 61, 8229 https://doi.org/10.1021/jo961129n
  43. Mukaiyama, T. Aldrichimica Acta 1996, 29, 59
  44. Mikami, K.; Matsukawa, S. Nature 1997, 385, 613 https://doi.org/10.1038/385613a0
  45. Yu, C.-M.; Jung, W.-H.; Choi, H.-S.; Lee, J.; Lee, J.-K. Tetrahedron Lett. 1995, 36, 8255 https://doi.org/10.1016/0040-4039(95)01771-9
  46. Yu, C.-M.; Choi, H.-S.; Lee, J.-K.; Yoon, S.-K. J. Org. Chem. 1997, 62, 6687 https://doi.org/10.1021/jo9707747
  47. Yu, C.-M.; Lee, J.; Chun, K.; Lee, J.; Lee, Y. J. Chem. Soc. Perkin Trans. 1 2000, 3622
  48. Yu, C.-M.; Lee, J.-Y.; Chun, K.; Choi, I.-K.; Kang, S. Chem. Commun. 2001, 2698
  49. Yu, C.-M.; Lee, J.; Kim, J.-M.; Lee, S.-K. Chem. Commun. 2003, 2036
  50. Yu, C.-M.; Choi, H.-S.; Jung, W.-H.; Lee, S.-S. Tetrahedron Lett. 1996, 37, 7095 https://doi.org/10.1016/0040-4039(96)01582-1
  51. Yu, C.-M.; Choi, H.-S.; Jung, W.-H.; Kim, H.-J.; Shin, J. Chem. Commun. 1997, 761
  52. Yu, C.-M.; Choi, H.-S.; Jung, W.-H.; Kim, H.-J.; Lee, J.-K. Bull. Korean Chem. Soc. 1997, 18, 471
  53. Yu, C.-M.; Choi, H.-S.; Yoon, S.-K.; Jung, W.-H. Synlett 1997, 889
  54. Wender, P. A.; Baryza, J. L.; Brenner, S. E.; Clarke, M. O.; Gamber, G. G.; Horan, J. C.; Jessop, T. C.; Kan, C.; Pattabiraman, K.; Williams, T. J. Pure & Appl. Chem. 2003, 75, 143 https://doi.org/10.1351/pac200375020143
  55. Kim, G.; Shim, J. H.; Kim, J. H. Bull. Korean Chem. Soc. 2003, 24, 1832 https://doi.org/10.5012/bkcs.2003.24.12.1832
  56. Wender, P. A.; Baryza, J. L.; Bennett, C. E.; Bi, F. C.; Brenner, S. E.; Clarke, M. O.; Horan, J. C.; Kan, C.; Lacoste, E.; Lippa, B.; Nell, P. G.; Turner, M. J. Am. Chem. Soc. 2002, 124, 13648 https://doi.org/10.1021/ja027509+
  57. Marshall, J. A. Chem. Rev. 2000, 100, 3163 https://doi.org/10.1021/cr000003u
  58. Keck, G. E.; Krishnamurthy, D.; Chen, X. Tetrahedron Lett. 1994, 35, 8323 https://doi.org/10.1016/S0040-4039(00)74397-8
  59. Yu, C.-M.; Yoon, S.-K.; Choi, H.-S.; Baek, K. Chem. Commun. 1997, 763
  60. Yu, C.-M.; Kim, J.-M.; Shin, M.-S.; Cho, D. Tetrahedron Lett. 2003, 44, 5487 https://doi.org/10.1016/S0040-4039(03)01033-5
  61. Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S. J. Am. Chem. Soc. 2001, 123, 12095 https://doi.org/10.1021/ja011983i
  62. Yamamoto, H. In Comprehensive Organic Synthesis; Heathcock, C. H., Ed.; Pergamon: Oxford, 1991; Vol. 2, pp 81-98
  63. Bruneau, C.; Dixneuf, P. H. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W., Eds.; Elsevier Science: Oxford, 1995; Vol. 1, pp 953-998
  64. Marshall, J. A.; Yu, R. H.; Perkin, J. P. J. Org. Chem. 1995, 60, 5550 https://doi.org/10.1021/jo00122a040
  65. Marshall, J. A. Chem. Rev. 1996, 96, 31 https://doi.org/10.1021/cr950037f
  66. Corey, E. J.; Yu, C.-M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112, 878 https://doi.org/10.1021/ja00158a064
  67. Brown, H. C.; Kulkarni, S. V. Tetrahedron Lett. 1996, 37, 4125-4128 https://doi.org/10.1016/0040-4039(96)00821-0
  68. Yu, C.-M.; Yoon, S.-K.; Baek, K.; Lee, J.-Y. Angew. Chem. Int. Ed. 1998, 37, 2392 https://doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2392::AID-ANIE2392>3.0.CO;2-D
  69. Soundararajan, R.; Li, G.; Brown, H. C. J. Org. Chem. 1996, 61, 100 https://doi.org/10.1021/jo9513976
  70. Hatakeyama, S.; Sugawara, K.; Takano, S. J. Chem. Soc. Chem. Commun. 1991, 1533
  71. Yu, C.-M.; Yoon, S.-K.; Lee, S.-J.; Lee, J.-Y.; Kim, S. S. Chem. Commun. 1998, 2749
  72. Yu, C.-M.; Lee, S.-J.; Jeon, M. J. Chem. Soc., Perkin Trans. 1 1999, 3557
  73. Yu, C.-M.; Jeon, M.; Lee, J.-Y.; Jeon, J. Eur. J. Org. Chem. 2001, 6, 1143
  74. Flamme, E.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 13644 https://doi.org/10.1021/ja028055j
  75. Wang, X.; Meng, Q.; Nation, A. J.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 10672 https://doi.org/10.1021/ja027655f
  76. Nakamura, M.; Hatekeyama, T.; Hara, K.; Hukudome, H.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 14344 https://doi.org/10.1021/ja044878s
  77. Halland, H.; Aburel, N.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2004, 43, 1272
  78. Yu, C.-M.; Lee, J.-Y.; So, B.; Hong, J. Angew. Chem. Int. Ed. 2002, 41, 161 https://doi.org/10.1002/1521-3773(20020104)41:1<161::AID-ANIE161>3.0.CO;2-N
  79. Yu, C.-M.; Hwang, H.-I.; Jung, H. K. unpublished result
  80. Yu, C.-M.; Kim, J.-M.; Shin, M.-S.; Yoon, M.-O. Chem. Commun. 2003, 1744
  81. Yu, C.-M.; Shin, M.-S.; Cho, E.-Y. Bull. Korean Chem. Soc. 2004, 25, 1625 https://doi.org/10.5012/bkcs.2004.25.11.1625
  82. Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. Chem. Rev. 1996, 96, 635 https://doi.org/10.1021/cr950065y
  83. Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49 https://doi.org/10.1021/cr950016l
  84. Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813 https://doi.org/10.1021/cr980054f
  85. Santelli, M.; Pons, J.-M. Lewis Acids and Selectivity in Organic Synthesis; CRC Press: Boca Raton, 1996; pp 163-176
  86. Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067 https://doi.org/10.1021/cr000666b
  87. Tsuji, Y.; Mukai, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1989, 369, C51 https://doi.org/10.1016/0022-328X(89)85196-4
  88. Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.-a.; Watanabe, Y. Organometallics 1995, 14, 1945 https://doi.org/10.1021/om00004a055
  89. Yu, C.-M.; Lee, S.; Hong, Y.-T.; Yoon, S.-K. Tetrahedron Lett. 2004, 45, 6557 https://doi.org/10.1016/j.tetlet.2004.07.032
  90. Yu, C.-M.; Hong, Y.-T.; Lee, J. J. Org. Chem. 2004, 69, 8506 https://doi.org/10.1021/jo049252z
  91. Yu, C.-M.; Hong, Y.-T.; Yoon, S.-K.; Lee, J. Synlett 2004, 169
  92. Yu, C.-M.; Yoon, S.-K.; Hong, Y.-T.; Kim, J.-M. Chem. Commun. 2004, 1840
  93. Yu, C.-M.; Kang, S.; Hong, Y.-T.; Lee, J.-H.; Kim, W.-Y.; Lee, I. Org. Lett. 2003, 5, 2813 https://doi.org/10.1021/ol034787k
  94. Yu, C.-M.; Youn, J.; Lee, M.-K. Org. Lett. 2005, 7, 3733 https://doi.org/10.1021/ol0513701
  95. Montgomery, J. Angew. Chem. Int. Ed. 2004, 43, 3890 https://doi.org/10.1002/anie.200300634
  96. Yu, C.-M.; Youn, J.; Yoon, S.-K.; Hong, Y.-T. Org. Lett. 2005, 7, 4507 https://doi.org/10.1021/ol051806c
  97. Aggarwal, V. K.; Davies, P. W.; Schmidt, A. T. Chem. Commun. 2004, 1232
  98. Alcazar, E.; Kassou, M.; Metheu, I.; Castillon, S. Eur. J. Org. Chem. 2000, 2285
  99. Chen, M.-J.; Narkuran, K.; Liu, R.-S. J. Org. Chem. 1999, 64, 8311 https://doi.org/10.1021/jo991077c
  100. Martin, V. S.; Rodriguez, C. M.; Martin, T. Org. Prep. Proc. Int. 1998, 30, 291 https://doi.org/10.1080/00304949809355291
  101. Yu, C.-M.; Youn, J.; Jung, J.-Y. Angew. Chem. Int. Ed. 2006, 45, 1553 https://doi.org/10.1002/anie.200503863

피인용 문헌

  1. -Diastereo- and Enantioselective Carbonyl Crotylation from the Alcohol or Aldehyde Oxidation Level Employing a Cyclometallated Iridium Catalyst: α-Methyl Allyl Acetate as a Surrogate to Preformed Crotylmetal Reagents vol.131, pp.7, 2009, https://doi.org/10.1021/ja808857w
  2. -Diastereo- and Enantioselective Carbonyl (Hydroxymethyl)allylation from the Alcohol or Aldehyde Oxidation Level: Allyl Carbonates as Allylmetal Surrogates vol.132, pp.13, 2010, https://doi.org/10.1021/ja100949e
  3. -Diastereo- and Enantioselective Carbonyl (Trimethylsilyl)allylation from the Alcohol or Aldehyde Oxidation Level vol.132, pp.26, 2010, https://doi.org/10.1021/ja103299f
  4. -Dicarboxylates as Allyl Donors via Iridium-Catalyzed Transfer Hydrogenation vol.132, pp.6, 2010, https://doi.org/10.1021/ja9097675
  5. Double Diastereo- and Enantioselective Iridium-Catalyzed Crotylation of 1,3-Diols: Beyond Stepwise Carbonyl Addition in Polyketide Construction vol.133, pp.32, 2011, https://doi.org/10.1021/ja204570w
  6. A novel allylic transfer reaction of chirally modified 2-borylbutadiene: synthesis of chiral homoallenyl alcohols vol.47, pp.13, 2011, https://doi.org/10.1039/c0cc05751g
  7. Chiral-Anion-Dependent Inversion of Diastereo- and Enantioselectivity in Carbonyl Crotylation via Ruthenium-Catalyzed Butadiene Hydrohydroxyalkylation vol.134, pp.51, 2012, https://doi.org/10.1021/ja311208a
  8. Iridium-Catalyzed Allylation of Chiral β-Stereogenic Alcohols: Bypassing Discrete Formation of Epimerizable Aldehydes vol.14, pp.24, 2012, https://doi.org/10.1021/ol3030692
  9. Consecutive iridium catalyzed C–C and C–H bond forming hydrogenations for the diastereo- and enantioselective synthesis of syn-3-fluoro-1-alcohols: C–H (2-fluoro)allylation of primary alcohols vol.48, pp.39, 2012, https://doi.org/10.1039/c2cc31743e
  10. Total Synthesis of 6-Deoxyerythronolide B via C–C Bond-Forming Transfer Hydrogenation vol.135, pp.11, 2013, https://doi.org/10.1021/ja4008722
  11. Mechanism and Selectivity of Rhodium-Catalyzed 1:2 Coupling of Aldehydes and Allenes vol.135, pp.20, 2013, https://doi.org/10.1021/ja4014166
  12. )-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition vol.136, pp.34, 2014, https://doi.org/10.1021/ja505962w
  13. Polyketide construction via hydrohydroxyalkylation and related alcohol C–H functionalizations: reinventing the chemistry of carbonyl addition vol.31, pp.4, 2014, https://doi.org/10.1039/c3np70076c
  14. Diastereo- and Enantioselective Iridium Catalyzed Coupling of Vinyl Aziridines with Alcohols: Site-Selective Modification of Unprotected Diols and Synthesis of Substituted Piperidines vol.137, pp.24, 2015, https://doi.org/10.1021/jacs.5b04404
  15. )-Siloxyallylation vol.137, pp.51, 2015, https://doi.org/10.1021/jacs.5b12131
  16. -Prenylation via 1,3-Enyne Transfer Hydrogenation: Beyond Stoichiometric Carbanions in Enantioselective Carbonyl Propargylation vol.138, pp.16, 2016, https://doi.org/10.1021/jacs.6b02279
  17. Enantioselective Alcohol C–H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis vol.138, pp.17, 2016, https://doi.org/10.1021/jacs.6b02019
  18. Alkine als alternativer Einstieg in elektrophile und nukleophile Übergangsmetall-katalysierte Allylierungen vol.129, pp.38, 2017, https://doi.org/10.1002/ange.201704248
  19. -(α-Amino)allylation via Ruthenium Catalyzed Hydrogen Autotransfer: Use of an Acetylenic Pyrrole as an Allylmetal Pronucleophile vol.19, pp.18, 2017, https://doi.org/10.1021/acs.orglett.7b02336
  20. Asymmetric Allylation of Glycidols Mediated by Allyl Acetate via Iridium-Catalyzed Hydrogen Transfer vol.19, pp.5, 2017, https://doi.org/10.1021/acs.orglett.7b00343
  21. Catalytic Enantioselective Carbonyl Allylation and Propargylation via Alcohol-Mediated Hydrogen Transfer: Merging the Chemistry of Grignard and Sabatier vol.50, pp.9, 2017, https://doi.org/10.1021/acs.accounts.7b00308
  22. Alkynes as Electrophilic or Nucleophilic Allylmetal Precursors in Transition-Metal Catalysis vol.56, pp.38, 2017, https://doi.org/10.1002/anie.201704248
  23. Hydrogen-Mediated C−C Bond Formation: Stereo- and Site-Selective Chemical Synthesis Beyond Stoichiometric Organometallic Reagents pp.00212148, 2017, https://doi.org/10.1002/ijch.201700088
  24. Enantioselective Iridium-Catalyzed Phthalide Formation through Internal Redox Allylation of Phthalaldehydes vol.130, pp.5, 2018, https://doi.org/10.1002/ange.201712015
  25. Enantioselective Iridium-Catalyzed Phthalide Formation through Internal Redox Allylation of Phthalaldehydes vol.57, pp.5, 2018, https://doi.org/10.1002/anie.201712015
  26. Regulation of Stereoselectivity and Reactivity in the Inter- and Intramolecular Allylic Transfer Reactions vol.37, pp.35, 2006, https://doi.org/10.1002/chin.200635253
  27. A diastereoselective carbocyclisation of allene-hydrazones through the intramolecular allylic transfer reaction pp.47, 2007, https://doi.org/10.1039/b712856h
  28. Catalytic Carbonyl Addition through Transfer Hydrogenation: A Departure from Preformed Organometallic Reagents vol.48, pp.1, 2008, https://doi.org/10.1002/anie.200802938
  29. Katalytische Carbonyladdition durch Transferhydrierung: weg von vorab gebildeten Organometallreagentien vol.121, pp.1, 2008, https://doi.org/10.1002/ange.200802938
  30. Enantioselective Allylation, Crotylation, and Reverse Prenylation of Substituted Isatins: Iridium-Catalyzed CC Bond-Forming Transfer Hydrogenation vol.121, pp.34, 2009, https://doi.org/10.1002/ange.200902328
  31. Enantioselective Allylation, Crotylation, and Reverse Prenylation of Substituted Isatins: Iridium-Catalyzed CC Bond-Forming Transfer Hydrogenation vol.48, pp.34, 2009, https://doi.org/10.1002/anie.200902328
  32. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency pp.47, 2009, https://doi.org/10.1039/b917243m
  33. alcohol-mediated hydrogen transfer vol.55, pp.7, 2019, https://doi.org/10.1039/C8CC09706B
  34. )–H functionalization mediated by organophotoredox and chiral chromium hybrid catalysis pp.2041-6539, 2019, https://doi.org/10.1039/C8SC05677C
  35. A Highly Diastereoselective Cyclocarbonylation of Allene-Aldehyde Mediated by Mo(CO)6: Synthesis of Bicyclic Lactones vol.28, pp.11, 2006, https://doi.org/10.5012/bkcs.2007.28.11.1921
  36. Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium-Catalyzed C−C Bond-Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones vol.130, pp.43, 2006, https://doi.org/10.1021/ja805356j
  37. Stereoselective Cylization of Allenoates Containing Carbonyl Functionalities Mediated Mo(CO)6: Synthesis of Canadensolide and Sporothriolide vol.30, pp.4, 2006, https://doi.org/10.5012/bkcs.2009.30.4.773
  38. Intramolecular Carbocyclization of Allenoate-aldehydes with Hexamethylditin Catalyzed by Palladium Complex: Synthesis of Cyclic Dienes vol.31, pp.3, 2006, https://doi.org/10.5012/bkcs.2010.31.03.559
  39. Iridium‐Catalyzed anti‐Diastereo‐ and Enantioselective Carbonyl (α‐Trifluoromethyl)allylation from the Alcohol or Aldehyde Oxidation Level vol.123, pp.18, 2006, https://doi.org/10.1002/ange.201008296
  40. Iridium‐Catalyzed anti‐Diastereo‐ and Enantioselective Carbonyl (α‐Trifluoromethyl)allylation from the Alcohol or Aldehyde Oxidation Level vol.50, pp.18, 2011, https://doi.org/10.1002/anie.201008296
  41. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation vol.84, pp.8, 2006, https://doi.org/10.1351/pac-con-11-10-18
  42. Protecting‐Group‐Free Diastereoselective CC Coupling of 1,3‐Glycols and Allyl Acetate through Site‐Selective Primary Alcohol Dehydrogenation vol.125, pp.11, 2006, https://doi.org/10.1002/ange.201209863
  43. Total Synthesis of Cyanolide A in the Absence of Protecting Groups, Chiral Auxiliaries, or Premetalated Carbon Nucleophiles vol.125, pp.16, 2006, https://doi.org/10.1002/ange.201300843
  44. In situ Catalytic Generation of Allylcopper Species for Asymmetric Allylation: Toward 1H‐Isochromene Skeletons vol.125, pp.28, 2013, https://doi.org/10.1002/ange.201302027
  45. Protecting‐Group‐Free Diastereoselective CC Coupling of 1,3‐Glycols and Allyl Acetate through Site‐Selective Primary Alcohol Dehydrogenation vol.52, pp.11, 2006, https://doi.org/10.1002/anie.201209863
  46. Total Synthesis of Cyanolide A in the Absence of Protecting Groups, Chiral Auxiliaries, or Premetalated Carbon Nucleophiles vol.52, pp.16, 2013, https://doi.org/10.1002/anie.201300843
  47. In situ Catalytic Generation of Allylcopper Species for Asymmetric Allylation: Toward 1H‐Isochromene Skeletons vol.52, pp.28, 2006, https://doi.org/10.1002/anie.201302027
  48. Katalytische enantioselektive C‐H‐Funktionalisierung von Alkoholen durch redoxgesteuerte Addition an die Carbonylgruppe: Wasserstoff‐Ausleihe und Kohlenstoff‐Rückgabe vol.126, pp.35, 2006, https://doi.org/10.1002/ange.201403873
  49. Catalytic Enantioselective CH Functionalization of Alcohols by Redox‐Triggered Carbonyl Addition: Borrowing Hydrogen, Returning Carbon vol.53, pp.35, 2006, https://doi.org/10.1002/anie.201403873
  50. Diastereo‐ and Enantioselective Iridium Catalyzed Carbonyl (α‐Cyclopropyl)allylation via Transfer Hydrogenation vol.21, pp.37, 2006, https://doi.org/10.1002/chem.201502499
  51. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls vol.137, pp.40, 2006, https://doi.org/10.1021/jacs.5b08019
  52. Ruthenium-Catalyzed Transfer Hydrogenation for C-C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs vol.374, pp.3, 2006, https://doi.org/10.1007/s41061-016-0028-0
  53. Acyclic Quaternary Carbon Stereocenters via Enantioselective Transition Metal Catalysis vol.117, pp.19, 2006, https://doi.org/10.1021/acs.chemrev.7b00385
  54. Catalytic Enantioselective Allylations of Acetylenic Aldehydes via 2-Propanol-Mediated Reductive Coupling vol.20, pp.13, 2018, https://doi.org/10.1021/acs.orglett.8b01776
  55. Successive Nucleophilic and Electrophilic Allylation for the Catalytic Enantioselective Synthesis of 2,4-Disubstituted Pyrrolidines vol.21, pp.8, 2006, https://doi.org/10.1021/acs.orglett.9b00508
  56. Total Synthesis of Clavosolide A via Asymmetric Alcohol‐Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction vol.131, pp.31, 2006, https://doi.org/10.1002/ange.201906259
  57. Total Synthesis of Clavosolide A via Asymmetric Alcohol‐Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction vol.58, pp.31, 2006, https://doi.org/10.1002/anie.201906259
  58. Direct Conversion of Primary Alcohols to 1,2-Amino Alcohols: Enantioselective Iridium-Catalyzed Carbonyl Reductive Coupling of Phthalimido-Allene via Hydrogen Auto-Transfer vol.141, pp.36, 2006, https://doi.org/10.1021/jacs.9b08715
  59. Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis vol.131, pp.40, 2006, https://doi.org/10.1002/ange.201905532
  60. Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis vol.58, pp.40, 2019, https://doi.org/10.1002/anie.201905532
  61. Co(III)-Catalyzed stereospecific synthesis of (E)-homoallylic alcohols with 4-vinyl-1,3-dioxan-2-ones: late-stage C-H homoallylation of indole derivatives vol.8, pp.16, 2006, https://doi.org/10.1039/d1qo00529d