DOI QR코드

DOI QR Code

The Reaction Probability and the Reaction Cross-section of N + O2→ NO + O Reaction Computed by the 6th-order Explicit Symplectic Algorithm

  • He, Jianfeng (Department of Physics, School of Science, Beijing Institute of Technology) ;
  • Li, Jing (Key Laboratory for Supermolecular Structure and Materials of Ministry of Education, Jilin University)
  • Published : 2006.12.20

Abstract

We have calculated the reaction probability and the reaction cross-section of the $N(^4S)+O_2(X^3\sum_{g}^{-})\;\rightarrow\;NO(X^2\Pi)+O(^3P)$ reaction by the quasiclassical trajectory method with the 6th-order explicit symplectic algorithm, based on a new ground potential energy surface. The advantage of the 6th-order explicit symplectic algorithm, conserving both the total energy and the total angular momentum of the reaction system during the numerical integration of canonical equations, has firstly analyzed in this work, which make the calculation of the reaction probability more reliable. The variation of the reaction probability with the impact parameter and the influence of the relative translational energy on the reaction cross-section of the reaction have been discussed in detail. And the fact is found by the comparison that the reaction probability and the reaction cross-section of the reaction estimated in this work are more reasonable than the theoretical ones determined by Gilibert et al.

Keywords

References

  1. Chase, M. W.; Jr.; Downey, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 1985, 4, 1
  2. Warneck, P. Chemistry of the Natural atmosphere (Academic, San Diego, 1998), Chap. 3
  3. Corcoran, T. C.; Beiting, E. J.; Mitchell, M. O. J. Mol. Spectrosc. 1992, 154, 119 https://doi.org/10.1016/0022-2852(92)90033-K
  4. Duff, J. W.; Bien, F.; Paulsen, D. E. Geophys. Res. Lett. 1994, 21, 2043 https://doi.org/10.1029/94GL01587
  5. Sayos, R.; Hijazo, J.; Gilibert, M.; González, M. Chem. Phys. Lett. 1998, 284, 101 https://doi.org/10.1016/S0009-2614(97)01304-3
  6. Gilibert, M.; Aguilar, A.; González, M.; Sayós, R. Chem. Phys. 1993, 172, 99 https://doi.org/10.1016/0301-0104(93)80109-M
  7. Murrell, J. N.; Carter, S.; Farantos, S. C.; Huxley, P.; Varandas, A. J. C. Molecular Potential Energy Functions (Wiley, Chichester, 1984)
  8. Caridade, P. J. B. S.; Varandas, A. J. C. J. Chem. Phys. 2004, 108, 3556 https://doi.org/10.1021/jp037040k
  9. Karplus, M.; Porter, R. N.; Sharma, R. D. J. Chem. Phys. 1965, 43, 3259 https://doi.org/10.1063/1.1697301
  10. Feng, K. Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations Computation of Partial Differential Equations (Science Press, Beijing, 1985) p 42
  11. Ruth, R. D. IEEE Trans. Nuc. Sci. 1983, 30, 2669 https://doi.org/10.1109/TNS.1983.4332919
  12. Gray, S. K.; Noid, D. W.; Sumpter, G. J. Chem. Phys. 1994, 101, 4062 https://doi.org/10.1063/1.467523
  13. Qin, M. Z.; Wang, D. L.; Zhang, M. Q. J. Comp. Math. 1991, 9, 211
  14. Yoshida, H. Phys. Lett. A. 1990, 150, 262 https://doi.org/10.1016/0375-9601(90)90092-3
  15. Schlier, Ch.; Seiter, A. Comp. Phys. Comm. 2000, 130, 176 https://doi.org/10.1016/S0010-4655(00)00011-4
  16. Schlier, Ch.; Seiter, A. J. Phys. Chem. A 1998, 102, 9399 https://doi.org/10.1021/jp981664m
  17. Li, Y. X.; Ding, P. Z.; Jin, M. X. Chem. J. Chinese U. 1994, 15, 1181
  18. Sayos, R.; Oliva, C.; González, M. J. Chem. Phys. 2002, 117, 670 https://doi.org/10.1063/1.1483853
  19. Gilibert, M.; Aguilar, A.; Gonzalez, M.; Sayos, R. Chem. Phys. 1993, 178, 287 https://doi.org/10.1016/0301-0104(93)85068-J
  20. Sayos, R.; Aguilar, A.; Gilibert, M.; Gonzalez, M. J. Chem. Soc. Faraday Trans. 1993, 89, 3223 https://doi.org/10.1039/ft9938903223

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450