DOI QR코드

DOI QR Code

QSPR Models for Chromatographic Retention of Some Azoles with Physicochemical Properties

  • Polyakova, Yulia (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng. Inga University) ;
  • Jin, Long Mei (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng. Inga University) ;
  • Row, Kyung-Ho (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng. Inga University)
  • Published : 2006.02.20

Abstract

This work deals with 24 substances composed of nitrogen-containing heterocycles. The relationships between the chromatographic retention factor (k) and those physicochemical properties which are relevant in quantitative structure-properties relationship (QSPR) studies, such as the polarizability $(\alpha)$, molar refractivity (MR), lipophilicity (logP), dipole moment $(\mu)$, total energy $(E_{tot})$, heat of formation $(\Delta H_f)$, molecular surface area $(S_M)$, and binding energy $(E_b)$, were investigated. The accuracy of the simple linear regressions between the chromatographic retention and the descriptors for all of the compounds was satisfactory (correlation coefficient, $0.8 \leq r \leq 1.0$). The QSPR models of these nitrogen-containing heterocyclic compounds could be predicted with a multiple linear regression equation having the statistical index, r = 1.000. This work demonstrated the successful application of the multiple linear approaches through the development of accurate predictive equations for retention factors in liquid chromatography.

Keywords

References

  1. Kaliszan, R. Quantitative Structure-Chromatographic Retention Relationships; Wiley: New York, 1987
  2. Feng, Y.; Zhu, P.; Hu, Z. J. Chromatogr. 1988, 25, 382 https://doi.org/10.1007/BF02324778
  3. Feng, Y. Q.; Liu, M. C.; Hu, Z. Chin. J. Chromatogr. 1986, 4, 259
  4. Roca, R. M. S.; Albarez, F. J. G. J. Chromatogr. 1992, 607, 91 https://doi.org/10.1016/0021-9673(92)87057-F
  5. Hinze, W. L.; Weber, S. G. Anal. Chem. 1991, 63, 1808 https://doi.org/10.1021/ac00017a027
  6. Yamagami, C.; Oguda, T.; Takao, N. J. Chromatogr. 1990, 514, 123 https://doi.org/10.1016/S0021-9673(01)89384-5
  7. Kaibara, A.; Hohda, C.; Hirata, N.; Hirose, M.; Nakagawa, T. Chromatographia 1990, 29, 275 https://doi.org/10.1007/BF02317918
  8. Smith, R. M. J. Chromatogr. A 1993, 656, 381 https://doi.org/10.1016/0021-9673(93)80811-L
  9. Law, B.; Weir, S. J. Chromatogr. A 1993, 657, 17 https://doi.org/10.1016/0021-9673(93)83030-V
  10. Smith, P. L.; Cooper, W. T. Chromatographia 1988, 25, 55 https://doi.org/10.1007/BF02311528
  11. Billiet, H. A. H.; Schoenmakers, P. J.; Galan, L. D. J. Chromatogr. 1981, 218, 443 https://doi.org/10.1016/S0021-9673(00)82070-1
  12. Townsend, L. B. Chem. Rev. 1976, 67, 533 https://doi.org/10.1021/cr60249a002
  13. Kleeman, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances, 3rd ed.; Stuttgart: New York, 1999
  14. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim (Germany), 2000
  15. Atkins, P. W. Quanta; Oxford University Press: Oxford, 1991
  16. Hansch, C.; Leo, A. J. Substituent Constants for Correlation Analysis in Chemistry and Biology; John Wiley: New York, 1979
  17. Leo, A. J. Chem. Rev. 1993, 93, 1281 https://doi.org/10.1021/cr00020a001
  18. Sanghvi, T. QSAR & Combinatorial Science 2003, 22, 258 https://doi.org/10.1002/qsar.200390020
  19. Diaz-Calleja, R.; Riande, E., In Dielectric Spectroscopy of Polymeric Materials; Runt, J. P.; Fitzgerald, J. J., Eds.; American Chemical Society: Washington, DC, 1997; pp 139-173
  20. Csizmadia, I. G. Theory and Practice of MO Calculations on Organic Molecules; Elsevier: Amsterdam, 1976
  21. Bodor, M.; Gabanyi, Z.; Wong, C.-K. J. Am. Chem. Soc. 1989, 111, 3783 https://doi.org/10.1021/ja00193a003
  22. Karelson, M. Molecular Descriptors in QSAR/QSPR; J. Wiley & Sons: New York, 2000
  23. Wang, R.; Gao, Y.; Lai, L. Perspect. Drug Discov. Des. 2000, 19, 47 https://doi.org/10.1023/A:1008763405023
  24. Bruket, U.; Allinger, N. L. Molecular Mechanics; ACS Monograph, American Chemical Society: Washington, 1982
  25. Palm, V. A. Fundaments in Quantitative Theory of Organic Chemistry; Khimiya: Russia (in Russian), 1967
  26. Kubinyi, H.; In QSAR: Hansch Analysis and Related Approaches; Mannhold, R.; Krogs Gaard-Larsen, P.; Timmerman, H., Eds.; VCH: Weinheim, 1993
  27. Gami-Yilinkou, G.; Kaliszan, R. J. Chromatogr. 1991, 550, 573 https://doi.org/10.1016/S0021-9673(01)88563-0
  28. Dai, J.; Jin, L.; Yao, S.; Wang, L. Chemosphere 2001, 42(8), 899 https://doi.org/10.1016/S0045-6535(00)00181-8
  29. Breneman, C. M.; Rhem, M. J. Comput. Chem. 1997, 18, 182 https://doi.org/10.1002/(SICI)1096-987X(19970130)18:2<182::AID-JCC4>3.0.CO;2-R

Cited by

  1. Synthesis and QSRR Study for a Series of Phosphoramidic Acid Derivatives vol.24, pp.2, 2013, https://doi.org/10.1002/hc.21076
  2. Sorption of benzotriazoles under the conditions of RP HPLC vol.90, pp.2, 2016, https://doi.org/10.1134/S0036024416020126
  3. Effect of the topology of benzotriazole derivatives on their chromatographic retention under RP-HPLC conditions vol.58, pp.3, 2017, https://doi.org/10.1134/S0022476617030052
  4. Influence of the Structure of Molecules of Derivatives of 1,2,4-Triazole and 1,2,4-Triazine on Chromatographic Retention Under Conditions of Reversed Phase HPLC vol.92, pp.7, 2018, https://doi.org/10.1134/S0036024418070142
  5. Annealing of Hydrogenated Diamond-like Carbon Films Deposited on Ground Electrode of Plasma Enhanced Chemical Vapor Deposition System vol.46, pp.9A, 2007, https://doi.org/10.1143/JJAP.46.5901
  6. Evaluation of Chromatographic and Some Physicochemical Properties of Phenolic Compounds using Abraham's Descriptors vol.31, pp.10, 2006, https://doi.org/10.1080/10826070802039341