DOI QR코드

DOI QR Code

Mono and Multilayer Assembly of Zeolite Microcrystals on Substrates

  • Yoon, Kyung-Byung (Center for Microcrystal Assembly, Department of Chemistry, and Program of Integrated Biotechnology, Sogang University)
  • Published : 2006.01.20

Abstract

We have shown that zeolite microcrystals can be readily organized in the form of uniformly oriented monoand multilayers on various substrates by well-defined chemical linkages based on covalent, ionic, and hydrogen bondings between the microcrystals and the substrates. This finding establishes the fact that micrometer-scale building blocks can be readily organized into organized entities through interconnection of the surface-tethered large number of functional groups. Since zeolite crystals have highly regular and uniform nanochannels and nanopores within them, the resulting mono and multilayers of zeolite microcrystals bear great potential to be utilized in various novel applications.

Keywords

References

  1. Petty, M. C. Langmuir-Blodgett Films an Introduction; Cambridge University Press: Cambrigde, UK, 1996
  2. Characterization of Organic Thin Films; Ulman, A.; Fitzpatrick, L. E., Eds.; Butterworth-Heinemann: Boston, MA, 1995
  3. Ulman, A. An Introduction to Ultrathin Organic Films; Academic Press: Boston, 1991
  4. Ulman, A. Chem. Rev. 1996, 96, 1533 https://doi.org/10.1021/cr9502357
  5. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481 https://doi.org/10.1021/ja00351a063
  6. Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92 https://doi.org/10.1021/ja00521a016
  7. Riklin, A.; Willner, I. Anal. Chem. 1995, 67, 4118 https://doi.org/10.1021/ac00118a014
  8. Lyon, L. A.; Rena, D. J.; Natan, M. J. J. Phys. Chem. B 1999, 103, 5826 https://doi.org/10.1021/jp984739v
  9. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735 https://doi.org/10.1021/ac00100a008
  10. Brust, M.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J. J. Am. Chem. Soc. 1998, 120, 12367
  11. Brust, M.; Bethell, D.; Kiely, C. J.; Schiffrin, D. J. Langmuir 1998, 5, 5425
  12. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89 https://doi.org/10.1126/science.284.5411.89
  13. Kulak, A.; Lee, Y. J.; Park, Y. S.; Yoon, K. B. Angew. Chem. Int. Ed. 2000, 39, 950 https://doi.org/10.1002/(SICI)1521-3773(20000303)39:5<950::AID-ANIE950>3.0.CO;2-U
  14. Choi, S. Y.; Lee, Y.-J.; Park, Y. S.; Ha, K.; Yoon, K. B. J. Am. Chem. Soc. 2000, 122, 5201 https://doi.org/10.1021/ja000113i
  15. Lee, G. S.; Lee, Y.-J.; Ha, K.; Yoon, K. B. Tetrahedron 2000, 56, 6965 https://doi.org/10.1016/S0040-4020(00)00517-2
  16. Kulak, A.; Park, Y. S.; Lee, Y.-J.; Chun, Y. S.; Ha, K.; Yoon, K. B. J. Am. Chem. Soc. 2000, 122, 9308 https://doi.org/10.1021/ja001321d
  17. Chun, Y. S.; Ha, K.; Lee, Y.-J.; Lee, J. S.; Kim. H. S.; Park, Y. S.; Yoon, K. B. Chem. Commun. 2002, 1846
  18. Ha, K.; Lee, Y.-J.; Lee, H. J.; Yoon, K .B. Adv. Mater. 2000, 12, 1114 https://doi.org/10.1002/1521-4095(200008)12:15<1114::AID-ADMA1114>3.0.CO;2-5
  19. Lee, J. S.; Ha, K.; Lee, Y.-J. Yoon, K. B. Adv. Mater. 2005, 17, 837 https://doi.org/10.1002/adma.200401457
  20. Lee, G. S.; Lee, Y.-J.; Yoon, K. B. J. Am. Chem. Soc. 2001, 123, 9769 https://doi.org/10.1021/ja010517q
  21. Park, J. S.; Lee, G. S.; Lee, Y.-J.; Park, Y. S.; Yoon, K. B. J. Am. Chem. Soc. 2002, 124, 13366 https://doi.org/10.1021/ja0270569
  22. Park, J. S.; Lee, Y.-J.; Yoon, K. B. J. Am. Chem. Soc. 2004, 126, 1934 https://doi.org/10.1021/ja038605t
  23. Kim, T.; Chan, K. C.; Crooks, R. M. J. Am. Chem. Soc. 1997, 119, 189 https://doi.org/10.1021/ja9617956
  24. Chan, K. C.; Kim, T.; Schoer, J. K.; Crooks, R. M. J. Am. Chem. Soc. 1995, 117, 5875 https://doi.org/10.1021/ja00126a037
  25. Lackowski, W. M.; Ghosh, P.; Crooks, R. M. J. Am. Chem. Soc. 1999, 121, 1419 https://doi.org/10.1021/ja983545q
  26. Huck, W. T. S.; Yan, L.; Stroock, A.; Haag, R.; Whitesides, G. M. Langmuir 1999, 15, 6862 https://doi.org/10.1021/la990374+
  27. Husemann, M.; Mecerreyes, D.; Hawker, C. J.; Hedrick, J. L.; Shah, R.; Abbott, N. L. Angew. Chem., Int. Ed. 1999, 38, 647 https://doi.org/10.1002/(SICI)1521-3773(19990301)38:5<647::AID-ANIE647>3.0.CO;2-0
  28. Ulman, A. In Thin Films; Self-Assembled Monolayers of Thiols, Vol. 24; Academic Press: San Diego, 1998; pp 112-114
  29. Ulman, A. Chem. Rev. 1996, 96, 1533 https://doi.org/10.1021/cr9502357
  30. Lee, G. S.; Lee, Y.-J.; Ha, K.; Yoon, K. B. Adv. Mater. 2001, 13, 1491 https://doi.org/10.1002/1521-4095(200110)13:19<1491::AID-ADMA1491>3.0.CO;2-N
  31. Lee, J. S.; Yoon, K. B., unpublished result
  32. Ha, K.; Park, J. S.; Oh, K. S.; Zhou, Y. S.; Chun, Y. S.; Lee, Y.-J.; Yoon, K. B. Micropor. Mesopor. Mater. 2004, 72, 91 https://doi.org/10.1016/j.micromeso.2004.04.008
  33. Ha, K.; Lee, Y.-J.; Jung, D.-Y.; Lee, J. H.; Yoon, K. B. Adv. Mater. 2000, 12, 1614 https://doi.org/10.1002/1521-4095(200011)12:21<1614::AID-ADMA1614>3.0.CO;2-H
  34. Ha, K.; Lee, Y.-J.; Chun, Y. S.; Park, Y. S.; Lee, G. S.; Yoon, K. B. Adv. Mater. 2001, 13, 594 https://doi.org/10.1002/1521-4095(200104)13:8<594::AID-ADMA594>3.0.CO;2-O
  35. Lee, J. S.; Lee, Y.-J.; Tae, E. L.; Park, Y. S.; Yoon, K. B. Science 2003, 301, 818 https://doi.org/10.1126/science.1086441
  36. So, H.; Ha, K.; Lee, Y.-J.; Yoon, K. B.; Belford, R. L. J. Phys. Chem. B 2003, 107, 8281 https://doi.org/10.1021/jp0343584
  37. Lai, Z.; Bonilla, G.; Diaz, I.; Nery, J. G.; Sujaoti, K.; Amat, M. A.; Kokkoli, E.; Terasaki, O.; Thompson, R. W.; Tsapatsis, M.; Vlachos, D. G. Science 2003, 300, 456

Cited by

  1. Ultrasound-Aided Monolayer Assembly of Spherical Silica Nanobeads vol.22, pp.6, 2013, https://doi.org/10.5757/JKVS.2013.22.6.298
  2. Preparation and characterization of Silicalite-1/PDMS surface sieving pervaporation membrane for separation of ethanol/water mixture vol.132, pp.34, 2015, https://doi.org/10.1002/app.42460
  3. Facile Monolayer Assembly of Fluorophore-Containing Zeolite Rods in Uniform Orientations for Anisotropic Photoluminescence vol.118, pp.32, 2006, https://doi.org/10.1002/ange.200600075
  4. Facile Monolayer Assembly of Fluorophore-Containing Zeolite Rods in Uniform Orientations for Anisotropic Photoluminescence vol.45, pp.32, 2006, https://doi.org/10.1002/anie.200600075
  5. Manual Assembly of Microcrystal Monolayers on Substrates vol.119, pp.17, 2007, https://doi.org/10.1002/ange.200604367
  6. Manual Assembly of Microcrystal Monolayers on Substrates vol.46, pp.17, 2007, https://doi.org/10.1002/anie.200604367
  7. Hierarchical Nanomanufacturing: From Shaped Zeolite Nanoparticles to High-Performance Separation Membranes vol.46, pp.40, 2007, https://doi.org/10.1002/anie.200604910
  8. Effect of Method on Monolayer Assembly of Zeolite Microcrystals on Glass with Molecular Linkages vol.52, pp.1-2, 2009, https://doi.org/10.1007/s11244-008-9148-2
  9. Separation of Lithium Isotopes by Tetraazamacrocycles Tethered to Merrifield Peptide Resin vol.28, pp.3, 2006, https://doi.org/10.5012/bkcs.2007.28.3.451
  10. Hierarchische Nanofertigung: von geformten Zeolithnanopartikeln zu hochleistungsfähigen Trennmembranen vol.119, pp.40, 2006, https://doi.org/10.1002/ange.200604910
  11. Structure and Physical Properties of Copper Thiomolybdate Complex, (nBu4N)3[MoS4Cu3Cl4] vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2299
  12. Study of Anisotropic Photoluminescence and Energy Transfer in Oriented Dye-incorporating Zeolite-L Monolayer vol.31, pp.8, 2010, https://doi.org/10.5012/bkcs.2010.31.8.2190
  13. Effect of H 2 O Activity on Zeolite Formation vol.13, pp.21, 2020, https://doi.org/10.3390/ma13214780