DOI QR코드

DOI QR Code

Dielectric Study of Methyl Acrylate-Alcohol Mixtures Using Time Domain Reflectometry

  • Dharmalingam, K. (Department of Physics, Annamalai University) ;
  • Ramachandran, K. (Department of Physics, Annamalai University) ;
  • Sivagurunathan, P. (Department of Physics, Annamalai University) ;
  • Prabhakar , B. (Department of Physics, Dr. B. A. M. University) ;
  • Khirade, P.W. (Department of Physics, Dr. B. A. M. University) ;
  • Mehrotra, S.C. (Department of Electronics and Computer Science, Dr. B. A. M. University)
  • Published : 2006.12.20

Abstract

Dielectric studies of methyl acrylate with 1-propanol, 1-butanol, 1-heptanol and 1-octanol binary mixtures have been carried out over the frequency range from 10 MHz to 10 GHz at temperatures of 283, 293, 303 and 313 K using Time Domain Reflectometry (TDR) for various concentrations. The Kirkwood correlation factor and excess inverse relaxation time were determined and discussed to yield information on the molecular structure and dynamics of the mixture. The values of the static dielectric constant, relaxation time and the Kirkwood correlation factor decrease with increased concentration of methyl acrylate in alcohol. The Bruggman plot shows a non-linearity of the curves for all the systems studied indicates the heterointeraction which may be due to hydrogen bonding of the OH group of alcohol with C=O of the methyl acrylate. The excess inverse relaxation time values are negative for all the systems at all the temperatures indicates that the solute-solvent interaction hinders the rotation of the dipoles of the system.

Keywords

References

  1. Schildknecht, C. E. Vinyl and Related Polymers; Wiley: New York, 1977
  2. Savage, P. E. Chem. Rev. 1999, 99, 603 https://doi.org/10.1021/cr9700989
  3. Shirke, R. M.; Chaudhari, A.; More, N. M.; Patil, P. B. J. Chem. Eng. Data 2000, 45, 917 https://doi.org/10.1021/je000066+
  4. Shirke, R. M.; Chaudhari, A.; More, N. M.; Patil, P. B. J. Mol. Liq. 2001, 94, 27 https://doi.org/10.1016/S0167-7322(01)00239-2
  5. Chaudhari, A.; Shirke, R. M.; More, N. M.; Patil, P. B. J. Sol. Chem. 2002, 31, 305 https://doi.org/10.1023/A:1015805304781
  6. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K. Z. Phys. Chem. 2005, 219, 1385
  7. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K. Spectrochim. Acta 2006, 64A, 127
  8. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K. Z. Phys. Chem. 2005, 219, 1635
  9. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K. Indian J. Pure & Appl. Phys. 2005, 43, 905
  10. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K. Main Group Chemistry 2005, 4, 241 https://doi.org/10.1080/10241220600649745
  11. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K. Indian J. Phys. 2005, 79, 1403
  12. Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P. Spectrochim. Acta 2007, 66A, 48
  13. Dharmalingam, K.; Ramachandran, K. Phys. Chem. Liq. 2006, 44, 77 https://doi.org/10.1080/00319100500337229
  14. Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P. Z. Phys. Chem. 2006, 220, 739
  15. Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P. S. Afr. J. Chem. 2006, 59, 75
  16. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K. J. Sol. Chem. 2006, 35, 1467 https://doi.org/10.1007/s10953-006-9076-3
  17. Vogal, A. I. Text Book of Practical Organic Chemistry, $3^{rd}$ ed.; Longman: London, 1957
  18. Samulon, H. A. Proc. IRE. 1951, 39, 175 https://doi.org/10.1109/JRPROC.1951.231438
  19. Shannon, C. E. Proc. IRE. 1949, 37, 10
  20. Cole, R. H.; Berbarian, J. G.; Mashimo, S.; Chryssikos, G.; Burns, A.; Tombari, E. J. Appl. Phys. 1989, 66, 793 https://doi.org/10.1063/1.343499
  21. Debye, P. Polar Molecules; Chemical Catalog: New York, 1929
  22. Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences, Mc Graw-Hill: New York, 1969
  23. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Prabhakar Undre, B.; Khirade, P. W.; Mehrotra, S. C. Main Group Chemistry 2005, 4, 235 https://doi.org/10.1080/10241220600628640
  24. Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P.; Kalamse, G. M. Main Group Chemistry 2005, 4, 227 https://doi.org/10.1080/10241220600601639
  25. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Prabhakar Undre, B.; Khirade, P. W.; Mehrotra, S. C. Phil. Mag. Lett. 2006, 86, 291 https://doi.org/10.1080/09500830600743856
  26. Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P.; Prabhakar Undre, B.; Khirade, P. W.; Mehrotra, S. C. Mol. Phys. 2006, 104, 2835 https://doi.org/10.1080/00268970600842737
  27. Smyth, C. P. In Molecular Interactions; Ratajczak, H., Orville-Thomas, W. J., Eds.; John Wiley and Sons: New York, 1981; Vol. II
  28. Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Prabhakar Undre, B.; Khirade, P. W.; Mehrotra, S. C. Physica B 2007, 387, 203 https://doi.org/10.1016/j.physb.2006.04.005
  29. Bruggeman, D. A. G. Ann. Phys. 1935, 5, 636
  30. Kirkwood, J. G. J. Chem. Phys. 1939, 7, 911 https://doi.org/10.1063/1.1750343
  31. Kumbharkhane, A. C.; Puranik, S. M.; Mehrotra, S. C. J. Sol. Chem. 1993, 22, 219 https://doi.org/10.1007/BF00649245
  32. Pieruccini, M.; Saija, F. J. Chem. Phys. 2004, 121, 3191 https://doi.org/10.1063/1.1773386
  33. Chaudhari, A.; Mehrotra, S. C. Mol. Phys. 2002, 100, 3907 https://doi.org/10.1080/0026897021000023668

Cited by

  1. Dielectric studies on binary mixtures of formamide with ethanolamine using the time domain technique vol.51, pp.2, 2011, https://doi.org/10.3952/lithjphys.51201
  2. Compressibility and Dielectric Relaxation of Mixtures of Water with Monohydroxy Alcohols vol.119, pp.38, 2015, https://doi.org/10.1021/acs.jpcb.5b07093
  3. Dielectric and structural relaxation in water and some monohydric alcohols vol.147, pp.2, 2017, https://doi.org/10.1063/1.4991850
  4. Dielectric and FTIR studies on the hydrogen bonded binary system of ester and alcohol vol.519, pp.1, 2017, https://doi.org/10.1080/00150193.2017.1360685
  5. Conformational and dielectric relaxation studies on hydrogen bonded binary mixture of ethyl acetate in 1-butanol and 1-pentanol vol.519, pp.1, 2017, https://doi.org/10.1080/00150193.2017.1360688
  6. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  7. Dielectric Study of Allyl Chloride with 2-Pentanone and 2-Hexanone in Microwave Frequency Range vol.33, pp.10, 2006, https://doi.org/10.5012/bkcs.2012.33.10.3423
  8. Dielectric Relaxation and FTIR Studies on Molecular Interaction between Ethylene Glycol Monobutyl Ether with Bromobenzene and Chlorobenzene vol.202, pp.1, 2019, https://doi.org/10.1080/10584587.2019.1674825
  9. Hydrogen Bonding Interaction between Amide and Alcohols: Dielectric Relaxation and FTIR Study vol.202, pp.1, 2006, https://doi.org/10.1080/10584587.2019.1674826
  10. FTIR and Dielectric Studies on Molecular Interaction between Chlorobenzene with 2-Methoxyethanol and 2-Ethoxyethanol vol.202, pp.1, 2006, https://doi.org/10.1080/10584587.2019.1674827
  11. Dielectric Relaxation in Water-Ethanolamine Mixtures as a Function of Composition and Temperature vol.202, pp.1, 2006, https://doi.org/10.1080/10584587.2019.1674829
  12. Molecular Interaction Studies of Bromobenzene with Methoxyethanol and Ethoxyethanol vol.202, pp.1, 2006, https://doi.org/10.1080/10584587.2019.1674830
  13. Microwave Dielectric Relaxation in Binary Mixtures of 1,3-Diaminopropane in Dimethylaminoethanol vol.205, pp.1, 2006, https://doi.org/10.1080/10584587.2019.1675012
  14. Cooperative dynamics in dipropylene glycol-ethanol mixtures using dielectric spectroscopy vol.59, pp.5, 2006, https://doi.org/10.1080/00319104.2020.1757096