DOI QR코드

DOI QR Code

Electrochemical Investigation of Acetaminophen with a Carbon Nano-tube Composite Film Electrode

  • Li, Chunya (College of Chemistry and Materials Science, South-Central University for Nationalities) ;
  • Zhan, Guoqing (College of Chemistry and Materials Science, South-Central University for Nationalities) ;
  • Yang, Qingdan (College of Chemistry and Materials Science, South-Central University for Nationalities) ;
  • Lu, Jianjie (College of Chemistry and Materials Science, South-Central University for Nationalities)
  • Published : 2006.11.20

Abstract

Electrochemical behaviors of acetaminophen at a muti-wall carbon nano-tube composite film modified glassy carbon electrode were investigated by cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Compared with that obtained at the unmodified electrode, the peak currents were enhanced significantly, and the oxidation peak shifted towards more negative potential with the reduction peak shifted positively. The peak-to-peak separation turned narrow, and suggested that the reversibility was improved greatly. Experimental parameters, such as scan rate, pH and accumulation conditions were optimized. It was found that a maximum current response can be obtained at pH = 5.0 after accumulation at -0.50 V for 80 s. The oxidation peak current was found to be linearly related to acetaminophen concentration over the range of $5.0{\times}10^{-7}\;\sim\;1.0{\times}10^{-4}$ mol $L^{-1}$ with a detection limit of $5.0{\times}10^{-8} $mol $L^{-1}$. A convenient and sensitive electrochemical method was developed for the determination of acetaminophen in a commercial paracetamol oral solution. Its practical application demonstrated that it has good selectivity and high sensitivity.

Keywords

References

  1. Miller, J.; Hickman, R.; Fratter, R.; Terblanche, J.; Saunders, S. J. Gastroenterology 1976, 71, 109
  2. Olivac, M. A.; Olsinaa, R. A.; Masib, A. N. Talanta 2005, 66, 229 https://doi.org/10.1016/j.talanta.2004.11.015
  3. Vale, J. A.; Proudfoot, A. T. Lancet 1995, 346, 547 https://doi.org/10.1016/S0140-6736(95)91385-8
  4. Srivastava, M. K.; Ahmed, S.; Singh, D.; Shukla, I. C. Analyst 1985, 110, 735 https://doi.org/10.1039/an9851000735
  5. Filik, H.; Hayvali, M.; Kilic, E. Anal. Chim. Acta 2005, 535, 177 https://doi.org/10.1016/j.aca.2004.11.058
  6. Dinc, E.; Yucesoy, C.; Onur, F. J. Pharm. Biomed. Anal. 2002, 28, 1091 https://doi.org/10.1016/S0731-7085(02)00031-6
  7. Bouhsain, Z.; Garrigues, S.; Rubio, A. M.; Guardia, M. Anal. Chim. Acta 1996, 330, 59 https://doi.org/10.1016/0003-2670(96)00179-1
  8. Criado, A.; Cardenas, S.; Gallego, M.; Valcarcel, M. Talanta 2000, 53, 417 https://doi.org/10.1016/S0039-9140(00)00509-9
  9. Canada, M. J. A.; Reguera, M. I. P.; Medina, A. R.; Cordova, M. L. F.; Diaz, A. M. J. Pharm. Biomed. Anal. 2000, 22, 59 https://doi.org/10.1016/S0731-7085(99)00265-4
  10. Staden, J. F. V.; Tsanwani, M. Talanta 2002, 58, 1095 https://doi.org/10.1016/S0039-9140(02)00406-X
  11. Moreira, A. B.; Oliveira, H. P. M.; Atvars, T. D. Z.; Dias, I. L. T.; Neto, G. O.; Zagatto, E. A. G.; Kubota, L. T. Anal. Chim. Acta 2005, 539, 257 https://doi.org/10.1016/j.aca.2005.03.012
  12. Giorgio, G.; Erika Del, G.; Roberta, R.; Gianna, A. J. Pharm. Biomed. Anal. 2006, 41, 798 https://doi.org/10.1016/j.jpba.2006.01.026
  13. Dinc, E.; Ozdemir, A.; Aksoy, H.; Baleanu, D. J. Liq. Chromatogr. Rel. Techn. 2006, 29, 1803 https://doi.org/10.1080/10826070600717023
  14. Zhao, S. L.; Bai, W. L.; Yuan, H. Y.; Xiao, D. Anal. Chim. Acta 2006, 559, 195 https://doi.org/10.1016/j.aca.2005.11.071
  15. Perez-Ruiz, T.; Martinez-Lozano, C.; Tomas, V.; Galera, R. J. Pharm. Biomed. Anal. 2005, 38, 87 https://doi.org/10.1016/j.jpba.2004.12.014
  16. Pedrosa, V. A.; Lowinsohn, D.; Bertotti, M. Electroanal. 2006, 18, 931 https://doi.org/10.1002/elan.200503483
  17. Van Staden, J. F.; Tsanwani, M. Talanta 2002, 58, 1095 https://doi.org/10.1016/S0039-9140(02)00406-X
  18. Bi, S.; Wang, G.; Piao, Y.; Wang, D.; Yin, X. Yanbian Daxue Xuebao (Ziran Kexueban) 2000, 26, 110
  19. Goyal, R. N.; Singh, S. P. Electrochim. Acta 2006, 51, 3008 https://doi.org/10.1016/j.electacta.2005.08.036
  20. Wangfuengkanagul, N.; Chailapakul, O. J. Pharm. Biomed. Anal. 2002, 28, 841 https://doi.org/10.1016/S0731-7085(01)00695-1
  21. Rajendra, N. G.; Vinod, K. G.; Munetaka, O.; Neeta, B. Electrochem. Commun. 2005, 7, 803 https://doi.org/10.1016/j.elecom.2005.05.005
  22. Mannan, B.; Won, M.-S.; Shim, Y.-B. Anal. Chim. Acta 2004, 512, 191 https://doi.org/10.1016/j.aca.2004.03.005
  23. Anson, F. C. Anal. Chem. 1964, 36, 932 https://doi.org/10.1021/ac60210a068
  24. Martinhon, P. T.; Carreno, J.; Sousa, C. R.; Barcia, O. E.; Mattos, O. R. Electrochim. Acta 2006, 51, 3022 https://doi.org/10.1016/j.electacta.2005.08.035
  25. Hu, C. G.; Yuan, S.; Hu, S. S. Electrochim. Acta 2006, 51, 3013 https://doi.org/10.1016/j.electacta.2005.08.034
  26. Ni, Y. N.; Wang, Y. R.; Kokot, S. Anal. Lett. 2004, 37, 3219 https://doi.org/10.1081/AL-200040332

Cited by

  1. Simultaneous Chronoamperometric Sensing of Ascorbic Acid and Acetaminophen at a Boron-Doped Diamond Electrode vol.8, pp.6, 2008, https://doi.org/10.3390/s8063952
  2. Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: a comparison between multi walled and single walled carbon nanotubes vol.172, pp.1-2, 2011, https://doi.org/10.1007/s00604-010-0475-1
  3. Electrochemical Synthesis of Titanium Nano Particles at Carbon Paste Electrodes and Its Applications as an Electrochemical Sensor for the Determination of Acetaminophen in Paracetamol Tablets vol.03, pp.04, 2013, https://doi.org/10.4236/snl.2013.34A006
  4. Simultaneous Determination of Acetaminophen and Ascorbic Acid at an Unmodified Boron-Doped Diamond Electrode by Differential Pulse Voltammetry in Buffered Media vol.20, pp.12, 2008, https://doi.org/10.1002/elan.200804188
  5. Application of some chemometric methods in conventional and derivative spectrophotometric analysis of acetaminophen and ascorbic acid vol.2, pp.4, 2010, https://doi.org/10.1002/dta.118
  6. Electrochemical Assay of Neurotransmitter Glycine in Brain Cells vol.28, pp.4, 2006, https://doi.org/10.5012/bkcs.2007.28.4.515
  7. Voltammetric Recognition of Ca2+ by Calix[4]arene Diquinone Diacid vol.31, pp.11, 2010, https://doi.org/10.5012/bkcs.2010.31.11.3115
  8. Multiwalled carbon nanotubes decorated with bismuth (III) oxide for electrochemical detection of an antipyretic and analgesic drug paracetamol in biological samples vol.10, pp.1, 2006, https://doi.org/10.1186/s40543-019-0181-5
  9. Electrochemical Evaluation of Catalytic Effect of Aluminum in Oxidation the Paracetamol in Human Blood vol.16, pp.3, 2006, https://doi.org/10.17721/moca.2021.162-168