DOI QR코드

DOI QR Code

Syntheses and Crystal Structures of Xylyl-Bridged NO2S2-Donor Macrocycles and Binuclear Mercury(II) Complex

  • Lee, Ji-Eun (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Jin, Yong-ri (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Seo, Joo-beom (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Yoon, Il (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Song, Mi-Ryoung (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Lee, So-Young (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Park, Ki-Min (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Lee, Shim-Sung (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
  • Published : 2006.02.20

Abstract

Isomeric series of dilinked $NO_2S_2$ macrocycles ($L^2$: para-, $L^3$: meta- and $L^4$: ortho-linked) capable of binuclear complexing ability were prepared from its monomeric analog $L^1$ in reasonable yields except ortho-type reaction, which led to mixture due to the formation of monomer-type macrocyclic quaternary ammonium bromide $L^5$. Moreover, L2 (as $2HNO_3$ form) and $L^5$ were confirmed by an X-ray crystallography. Reaction of $HgCl_2$ with $L^2$ yielded a binuclear complex $[Hg_2(L^2)Cl_4]$. In the complex, each mercury(II) has a distorted tetrahedral environment made up of S and N donors from an exodentate $L^2$ and two coordinated Cl atoms.

Keywords

References

  1. Vigato, P. A.; Tamburini, S.; Fenton, D. E. Coord. Chem. Rev. 1990, 106, 25 https://doi.org/10.1016/0010-8545(60)80002-1
  2. Guerrier, P.; Vigato, P. A.; Fenton, D. E.; Hellier, P. C. Acta Chem. Scand. 1992, 46, 1025 https://doi.org/10.3891/acta.chem.scand.46-1025
  3. Hay, R. W.; Dilworth, J. R.; Nolan, K. B. Perspectives on Bioinorganic Chemsitry; JAI Press: Greenwhich, CY, 1993; Vol. 2, pp 81-138
  4. Lindoy, L. F. Coord. Chem. Rev. 1998, 174, 327 https://doi.org/10.1016/S0010-8545(98)00054-X
  5. Lindoy, L. F. Adv. Inorg. Chem. 1998, 45, 75 https://doi.org/10.1016/S0898-8838(08)60025-2
  6. Kaden, T. A. Coord. Chem. Rev. 1999, 190-192, 371
  7. Chartres, J. D.; Lindoy, L. F.; Meehan, G. V. Coord. Chem. Rev. 2001, 216-217, 249
  8. Burk, P. L.; Osborn, J. A.; Youinou, M.-T. J. Am. Chem. Soc. 1981, 103, 1273 https://doi.org/10.1021/ja00395a072
  9. Park, K. J.; Kim, J.-H.; Meehan, G. V.; Nishimura, T.; Lindoy, L. F.; Lee, S. S.; Park, K.-M.; Yoon, I. Aust. J. Chem. 2002, 55, 773 https://doi.org/10.1071/CH02164
  10. Fainerman-Melnikova, M.; Nezhadali, A.; Rounaghi, G.; McMurtrie, J. C.; Kim, J.; Gloe, K.; Langer, M.; Lee, S. S.; Lindoy, L. F.; Nishimura, T.; Park, K.-M.; Seo, J. Dalton Trans. 2004, 122
  11. Jin, Y.; Yoon, I.; Seo, J.; Lee, J.-E.; Moon, S.-T.; Kim, J.; Han, S. W.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Dalton Trans. 2005, 788
  12. Burguete, M. I.; Garia-Espana, E.; Luis, S. V.; Miravet, J. F.; Paya, L.; Querol, M.; Soriano, C. Chem. Commun. 1998, 1823
  13. Marchand, A. P.; Cal, D.; Mlinaric-Majerski, K.; Ejsmont, K.; Watson, W. H. J. Chem. Cryst. 2002, 32, 447 https://doi.org/10.1023/A:1021140609077
  14. Caltagirone, C.; Bencini, A.; Demartin, F.; Devillanova, F. A.; Garau, A.; Isaia, F.; Lippolis, V.; Mariani, P.; Papke, U.; Tei, L.; Verani, G. Dalton Trans. 2003, 901
  15. Afshar, S.; Marcus, S. T.; Gahan, L. R.; Hambley, T. W. Aust. J. Chem. 1999, 52, 1 https://doi.org/10.1071/C98096
  16. Byriel, K. A.; Gahan, L. R.; Kennard, C. H. L.; Sunderland, C. T. J. Chem. Soc., Dalton Trans. 1993, 625
  17. Bruker, SMART and SAINT: Area Detector Control and Integration Software Ver. 5.0; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998
  18. Sheldrick, G. M. SADABS: Empirical Absorption and Correction Software; University of Gottingen: Gottingen, Germany, 1999
  19. Bruker, SHELXTL: Structure Determination Programs, Ver. 5.16; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998

Cited by

  1. -Donor Macrocyclic Fluoroionophores Exhibiting Mercury(II)-Selectivity vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4117
  2. Extra Large Macrocycle: 40-Membered Macrocycle via 2:2 Cyclization and Its Dimercury(II) Complex vol.50, pp.17, 2011, https://doi.org/10.1021/ic2009607
  3. Selectivity vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1429
  4. Endo- and Exo-Coordinated Mercury(II) Complexes of O3S2 Macrocycles: Effect of Dibenzo-Substituents on Coordination Mode vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2041
  5. Discrete and Continuous Soft Metal Complexes of O2S2 and NO2S2 Macrocycles with Endo- or Exo-Coordination Mode vol.29, pp.1, 2006, https://doi.org/10.5012/bkcs.2008.29.1.241
  6. A Triple-Probe Channel NO2S2-Macrocycle: Synthesis, Sensing Characteristics and Crystal Structure of Mercury(II) Nitrate Complex vol.31, pp.7, 2006, https://doi.org/10.5012/bkcs.2010.31.7.2031
  7. Syntheses and Crystal Structures of Anthracene-Attached and Anthracene-Bridged NO2S2-Macrocycles as Fluoroionophores vol.32, pp.5, 2006, https://doi.org/10.5012/bkcs.2011.32.5.1761
  8. A double decker type complex: copper(I) iodide complexation with mixed donor macrocycles via [1 : 1] and [2 : 2] cyclisations vol.45, pp.11, 2006, https://doi.org/10.1039/c5dt03751d