DOI QR코드

DOI QR Code

Preliminary Results of Extraction, Separation and Quantitation of Arsenic Species in Food and Dietary Supplements by HPLC-ICP-MS

  • Nam, Sang-Ho (Mokpo National University, Department of Chemistry) ;
  • Cheng, John (U. S. Food and Drug Administration, Elemental Research Branch, Center for Food Safety and Applied Nutrition) ;
  • Mindak, William R. (U. S. Food and Drug Administration, Elemental Research Branch, Center for Food Safety and Applied Nutrition) ;
  • Capar, Stephen G. (U. S. Food and Drug Administration, Elemental Research Branch, Center for Food Safety and Applied Nutrition)
  • Published : 2006.06.20

Abstract

Various extraction procedures were investigated using reference materials and samples to evaluate extraction efficiency and effectiveness. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure total arsenic and to quantitate arsenic species when coupled to an HPLC (high pressure liquid chromatography). Arsenic species were extracted from rice flour (NIST SRM 1568a) with water/methanol mixtures using accelerated solvent extraction (ASE). Total arsenic extraction efficiency ranged from 42 to 64%, for water and various methanol concentrations. From spinach (NIST SRM 1570), freeze-dried apple, and rice flour (NIST SRM 1568a), arsenic species were extracted with trifluoroacetic acid (TFA) at 100 ${^{\circ}C}$. Total arsenic extraction efficiency was 90% for spinach, 75% for freeze-dried apple, and 83% for rice flour. Enzymatic extraction with alpha-amylase and sonication resulted in extraction efficiency of 104% for rice flour, 98% for freeze-dried apple, and 7% for spinach. Chromatograms of arsenic species extracted by the optimum extraction methods were obtained, and the species were quantified. Arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were found in the apple sample, and DMA and As(V) in the rice flour sample. As(V) and MMA were found in three herbal dietary supplement samples.

Keywords

References

  1. Tao, S. S.-H.; Bolger, P. M. Food Addit. Contam. 1998, 16, 465 https://doi.org/10.1080/026520399283759
  2. Dolan, S. P.; Nortrup, D. A.; Bolger, P. M.; Capar, S. G. J. Agric. Food Chem. 2003, 51, 1307 https://doi.org/10.1021/jf026055x
  3. Arsenic Exposure and Health; Chappell, W. R.; Abernathy, C. O.; Cothern, C. R., Eds.; Science and Technology Letters: U.K., 1995
  4. Infante, H. G.; Campenhout, K. V.; Blust, R.; Adams, F. C. J. Anal. At. Spectrom. 2002, 17, 79 https://doi.org/10.1039/b108354f
  5. McSheehy, S.; Pannier, F.; Szpunar, J.; Portin-Gautier, M.; Lobinski, R. Analyst 2002, 127, 223 https://doi.org/10.1039/b108680b
  6. Moreno, P.; Quijano, M. A.; Gutierrez, A. M.; Perez-Conde, M. C.; Camara, C. J. Anal. At. Spectrom. 2001, 16, 1044 https://doi.org/10.1039/b102509k
  7. Sufier, M. A.; Devesa, V.; Munoz, O.; Vélez, D.; Montoro, R. J. Anal. At. Spectrom. 2001, 16, 390 https://doi.org/10.1039/b007518n
  8. B'Hymer, C.; Caruso, J. A. J. Liq. Chrom. Rel. Technol. 2002, 25, 639 https://doi.org/10.1081/JLC-120008817
  9. Marchante-Gayón, J. M.; Feldmann, I.; Thomas, C.; Jakubowski, N. J. Anal. At. Spectrom. 2001, 16, 457 https://doi.org/10.1039/b008649p
  10. Sheppard, B. S.; Caruso, J. A.; Heitkemper, D. T.; Wolnik, K. A. Analyst 1992, 117, 971 https://doi.org/10.1039/an9921700971
  11. Heitkemper, D. T.; Vela, N. P.; Stewart, K. R.; Westphal, C. S. J. Anal. At. Spectrom. 2001, 16, 299 https://doi.org/10.1039/b007241i
  12. Le, X. C.; Li, X.-F.; Lai, V.; Ma, M.; Yalcin, S.; Feldmann, J. Spectrochim. Acta, Part B 1998, 53, 899 https://doi.org/10.1016/S0584-8547(98)00105-0
  13. Ipolyi, I.; Fodor, P. Anal. Chim. Acta 2000, 413, 13 https://doi.org/10.1016/S0003-2670(00)00817-5
  14. Martinez, A.; Morales-Rubio, A.; Cervera, M. L.; Guardia de la, M. J. Anal. At. Spectrom. 2001, 16, 762 https://doi.org/10.1039/b101811f
  15. Munoz, O.; Velez, D.; Montoro, R.; Arroyo, A.; Zamorano, M. J. Anal. At. Spectrom. 2000, 15, 711 https://doi.org/10.1039/b001340o
  16. Ali, I.; Aboul-Enein, H. Y. Chemosphere 2002, 48, 275 https://doi.org/10.1016/S0045-6535(02)00085-1
  17. Tukai, R.; Maher, W. A.; McNaught, I. J.; Ellwood, M. J. J. Anal. Chim. Acta 2002, 457, 173 https://doi.org/10.1016/S0003-2670(02)00018-1
  18. Gallardo, M. V.; Bohari, Y.; Astruc, A.; Potin-Gautier, M.; Astruc, M. Anal. Chim. Acta 2001, 441, 257 https://doi.org/10.1016/S0003-2670(01)01114-X
  19. McSheehy, S.; Pohl, P.; Lobinski, R.; Szpunar, J. J. Anal. Chim. Acta 2001, 440, 3 https://doi.org/10.1016/S0003-2670(01)00906-0
  20. Francesconi, K.; Visoottiviseth, P.; Sridokchan, W.; Goessler, W. Sci. Total Environ. 2002, 284, 27 https://doi.org/10.1016/S0048-9697(01)00854-3
  21. Polesello, S.; Valsecchi, S.; Cavalli, S.; Reschiotto, C. J. Chromatogr. 2001, 920, 231 https://doi.org/10.1016/S0021-9673(01)00745-2
  22. Martinez-Bravo, Y.; Roig-Navarro, A. F.; Lopez, F. J.; Hernandez, F. J. Chromatogr. 2001, 926, 265 https://doi.org/10.1016/S0021-9673(01)01062-7
  23. Larsen, E. H.; Pritzl, G.; Hansen, S. H. J. Anal. At. Spectrom. 1993, 8, 557 https://doi.org/10.1039/ja9930800557
  24. Wrobel, K.; Parker, B.; Kannamkumarath, S. S.; Caruso, J. A. Talanta 2002, 58, 899 https://doi.org/10.1016/S0039-9140(02)00404-6
  25. Anawar, H. M.; Aki, J.; Mostofa, K. M. G.; Safiullah, S.; Tareq, S. M. Environment International 2002, 27, 597 https://doi.org/10.1016/S0160-4120(01)00116-7
  26. Le, X. C.; Lu, X.; Li, X. Anal. Chem. 2004, 27A
  27. Abedin, M. J.; Cresser, M. S.; Meharg, A. A.; Feldman, J.; Cotter- Howells, J. Environ. Sci. Technol. 2002, 36, 962 https://doi.org/10.1021/es0101678
  28. Williams, P. N.; Price, A. H.; Raab, A.; Hossain, S. A.; Feldmann, J.; Meharg, A. A. Environ. Sci. Technol. 2005, 39, 5531 https://doi.org/10.1021/es0502324
  29. Ackley, K. L.; B'Hymer, C.; Sutton, K. L.; Caruso, J. A. J. Anal. At. Spectrom. 1999, 14, 845 https://doi.org/10.1039/a807466f
  30. Faulk, K.; Emons, H. J. Anal. At. Spectrom. 2000, 15, 643 https://doi.org/10.1039/b001024n
  31. Madsen, A. D.; Goessler, W.; Pedersen, S. N.; Francesconi, K. A. J. Anal. At. Spectrom. 2000, 15, 657 https://doi.org/10.1039/b001418o
  32. Larsen, E. H. Spectrochim. Acta, Part B 1998, 53, 253 https://doi.org/10.1016/S0584-8547(97)00137-7
  33. Milstein, L. S.; Essader, A.; Murrell, C.; Pellizzari, E. D.; Fernando, R. A.; Raymer, J. H.; Akinbo, O. J. Agric. Food Chem. 2003, 51, 4180 https://doi.org/10.1021/jf0210268
  34. Lamble, K. J.; Hill, S. J. Anal. Chim. Acta. 1996, 334, 261 https://doi.org/10.1016/S0003-2670(96)00348-0
  35. D'Amato, M.; Forte, G.; Caroli, S. J AOAC Int. 2004, 87, 238
  36. Lamont, W. H. J. Food Comp. Anal. 2003, 16, 687 https://doi.org/10.1016/S0889-1575(03)00097-8
  37. Branch, S.; Ebdon, L.; O'Neill, P. J. Anal. At. Spectrom. 1994, 9, 33 https://doi.org/10.1039/ja9940900033
  38. Zheng, J.; Hintelmann, H. J. Anal. At. Spectrom. 2004, 19, 191 https://doi.org/10.1039/b304890j

Cited by

  1. The Determination of Arsenic Compounds: A Critical Review vol.2013, pp.2090-732X, 2013, https://doi.org/10.1155/2013/835371
  2. Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS vol.30, pp.10, 2015, https://doi.org/10.1039/C5JA00155B
  3. Total and Inorganic Arsenic in Iranian Rice vol.80, pp.5, 2015, https://doi.org/10.1111/1750-3841.12849
  4. Current literature in mass spectrometry vol.42, pp.3, 2007, https://doi.org/10.1002/jms.1072
  5. Solid phase extraction of trace cadmium and lead in food samples using modified peanut shell prior to determination by flame atomic absorption spectrometry vol.165, pp.1-2, 2009, https://doi.org/10.1007/s00604-008-0126-y
  6. Mass Background Spectra of ICP-MS with Various Acids vol.29, pp.11, 2006, https://doi.org/10.5012/bkcs.2008.29.11.2237