DOI QR코드

DOI QR Code

Chemical Modification of Yeast Farnesyl Protein Transferase Expressed in E. coli

  • Published : 2006.04.20

Abstract

Chemical modification of the S. cerevisiae farnesyl protein transferase (FPT) with CMC, phenylglyoxal and DEPC resulted in enzyme inactivation, depending upon the reagent concentration. The peptide substrate GST-PEP-I, a GST-fused undecapeptide mimicking the C-terminus of $p21^{Ki-ras}$, protected the enzyme against inactivation by CMC which is specific to either aspartate or glutamate, while the other substrate farnesyl pyrophosphate (FPP) showed protection against phenylglyoxal which is the specific modifier of arginine residues, dependent on the substrate concentrations. Neither of the two substrates protected the enzyme against histidine inactivation by DEPC. It is suggested that there is at least one aspartate or glutamate residue at the peptide substrate binding site, and that at least one arginine residue is located at the binding site of FPP. There also seems to be at least one histidine residue which is critical for enzymic activity and is exposed toward the bulk solution, excluded from the substrate binding sites.

Keywords

References

  1. Casey, P. J. J. Lipid Res. 1992, 33, 1731-1740
  2. Kamiya, Y.; Sakurai, A.; Tamura, S.; Takahashi, A. Biochem. Biophys. Res. Common. 1978, 83, 1077-1083 https://doi.org/10.1016/0006-291X(78)91505-X
  3. Ishibashi, Y.; Sakagami, Y.; Isogai, A.; Suzuki, A. Biochemistry 1984, 23, 1399-1404 https://doi.org/10.1021/bi00302a010
  4. Hancock, J. F.; Magee, A. I.; Childs, J. E.; Marshall, C. J. Cells 1989, 57, 1167-1177 https://doi.org/10.1016/0092-8674(89)90054-8
  5. Schafer, W. R.; Kim, R.; Sterne, R.; Thorner, J.; Kim, S. H.; Rine, J. Science 1989, 245, 379-385 https://doi.org/10.1126/science.2569235
  6. Casey, P. J.; Solski, P. A.; Der, C. J.; Buss, J. E. Proc. Natl. Acad. Sci. USA 1989, 86, 8323-8327 https://doi.org/10.1073/pnas.86.21.8323
  7. Shafer, W. R.; Rine, J. Annu. Rev. Genet. 1992, 25, 209-238
  8. Powers, S.; Michaelis, S.; Broek, D.; Santa-Ana, A. S.; Field, J. et al. Cells 1986, 47, 413-422 https://doi.org/10.1016/0092-8674(86)90598-2
  9. Glomset, J. A.; Gelb, M. H.; Farnsworth, C. C. Trends Biochem. Sci. 1990, 15, 139-142 https://doi.org/10.1016/0968-0004(90)90213-U
  10. Goldstein, J. L.; Brown, M. S. Nature 1990, 343, 425-430 https://doi.org/10.1038/343425a0
  11. Brown, M. S.; Goldstein, J. L. J. Lipid. Res. 1980, 21, 505-517
  12. Reiss, Y.; Goldstein, J. L.; Seabra, M. C.; Casey, P. J.; Brown, M. S. Cell 1990, 62, 81-88 https://doi.org/10.1016/0092-8674(90)90242-7
  13. Schaber, M. D. et al. JBC 1990, 265, 14701-14704
  14. Manne, V. et al. Proc. Natl. Acad. Sci. USA 1990, 87, 7541-7545 https://doi.org/10.1073/pnas.87.19.7541
  15. Reiss, Y.; Brown, M. S.; Goldstein, J. L. J. Biol. Chem. 1992, 267, 6403-6408
  16. Omer, C. A.; Kral, A. M.; Dzehl, R. E.; Prendergast, G. C.; Powers, S.; Allen, C. M.; Gibbs, J. B.; Kohl, N. E. Biochemistry 1993, 32, 5167-5176 https://doi.org/10.1021/bi00070a028
  17. Moores, S. L. et al. JBC 1991, 266, 14603-14610
  18. Seabra, M. C.; Reiss, Y.; Casey, P. J.; Brown, M. S.; Goldstein, J. L. Cell 1991, 65, 429-434 https://doi.org/10.1016/0092-8674(91)90460-G
  19. Chen, W. J.; Andress, D. A.; Goldstein, J. L.; Russell, D. W.; Brown, M. S. Cell 1991, 66, 327-334 https://doi.org/10.1016/0092-8674(91)90622-6
  20. Takahashi, K. JBC 1988, 243, 6171
  21. Schloss, J. V.; Norton, I. L.; Stringer, C. D.; Hartman, F. C. Biochemistry 1978, 17, 5626-5631 https://doi.org/10.1021/bi00619a007
  22. Davidson, W. S.; Flynn, T. G. JBC 1979, 254, 3724-3729
  23. Berghauser, J. Hoppe-Seyler's Z. Physiol. Chem. 1977, 358, 1565-1572 https://doi.org/10.1515/bchm2.1977.358.2.1565
  24. Patel, D. V. JMC 1995, 38, 435-442 https://doi.org/10.1021/jm00003a006

Cited by

  1. Current awareness on yeast vol.24, pp.2, 2007, https://doi.org/10.1002/yea.1323