A New Flavanone from the Wood of *Amorpha fruticosa* L.

Hyun-Jung Lee, Oh-Kyu Lee, Yeong-Han Kwon,[†] Don-Ha Choi, Ha-Young Kang, Hyeon-Yong Lee,[∓] Ki-Hyon Paik,[§] and Hak-Ju Lee^{*}

Div. Wood Chemistry & Microbiology, Korea Forest Research Institute, Seoul 130-712, Korea. "E-mail: leehj99@foa.go.kr Korea National Arboretum, Pocheon 487-821, Korea

⁴School of Biotechnology & Bioengineering, Kangwon National University, Chuncheon 200-701, Korea ⁸Dept. of Forest Resources and Environmental Science, Korea University, Seoul 136-701, Korea

Received August 12, 2005

Key Words : Amorpha fruticosa, Leguminosae, 3',5',7-Trihydroxyflavanone

In the course of studies on phenolic compounds in leguminous plants, we have selected *Amorpha fruticosa*. *A. fruticosa* is a shrub originated from North America. This plant was introduced to Korea through China in 1930s.¹ This plant grows up to about three meters high and flowers in May to June. Its seed is ripened in September and usually has one seed per fruit.¹

Numerous isoflavones,² flavanones,^{3,4} and rotenoids^{2,4,7} have been reported from the fruit, leaf, and root of this plant. However, phenolic compounds in the wood of *A. fruticosa* have less studied. In this study, the methanol (MeOH) extract of the wood of *A. fruticosa* was separated by column chromatography to give a new flavanone (Fig. 1), 3',5',7-trihydroxyflavanone (1). Its chemical structure was identified by instrumental analysis using ultraviolet (UV), infrared (IR), mass (MS), and nuclear magnetic resonance (NMR) spectrometer.

Compound 1 was isolated as a yellow amorphous solid. The UV λ_{max} (log ε) of compound 1 appeared at 424 (3.13) nm and 288 (3.36) nm. The IR spectrum disclosed a characteristic absorption for the conjugated carbonyl group (1670 cm⁻¹) and OH region (3422 cm⁻¹). In the EIMS of compound 1, the molecular ion peak was observed at m/z 272 ([M]⁺) (base ion) and the major ion peaks were m/z 255, 163, 150, and 137. The HREIMS of compound 1 gave a molecular ion peak at m/z 272.0679, corresponding to the molecular formula of C₁₅H₁₂O₅.

The structure of compound 1 was deduced from the

Figure 1. Key HMBC correlation of compound 1.

analysis of ¹H and ¹³C-NMR data (Table 1) aided with 2D NMR measurements (¹H-¹H COSY, NOESY, HMQC, and HMBC). The ¹⁵C-NMR spectrum showed fifteen resonances, sorted by DEPT experiments into seven primary carbons, one secondary carbon, and seven quaternary carbons.

The signal at δ 193.49 (s, C-4) was attributed to the carbonyl carbon. The long-range heteronuclear interactions of compound 1 were established by the HMBC spectrum which showed the *ortho* coupled proton signal δ 7.72 is connected to C-4. This proton signal was assigned to H-5 (δ 7.72, 1H, d, J = 9.0 Hz). The ¹H-¹H COSY spectrum revealed the connectivity of H-5 to H-6 (δ 6.50, 1H, dd, J = 1.5, 9.0 Hz). The proton signal at δ 6.35 (1H, d, J = 1.5 Hz) was assigned to the *meta* coupled aromatic H-8. ¹H-¹⁵C connectivities of compound 1 were established by the HMQC spectrum which showed that H-5 and H-6 are connected to C-5 (δ 129.82, d) and C-6 (δ 111.78, d), respectively. Similarly, H-8 is connected to C-8 (δ 103.85, d). In the HMBC spectrum, the correlations between H-5 and C-4/C-9/C-7, H-6 and C-7/C-10/C-8, and H-8 and C-10/C-6 were observed. The correlation between H-6 and an oxygenated aromatic carbon (δ 165.53, s) was observed in the HMBC spectrum. From the above data, it was considered that a hydroxyl group is connected to C-7.

A methylene carbon signal at δ 45.03 (*t*) was assigned to C-3. The HMQC spectrum showed that C-3 is connected to the two H-3s (δ 2.70, 1H, *dd*, J = 3.0, 17.0 Hz and δ 3.00, 1H, *d*, J = 13.0, 17.0 Hz). The ¹H-¹H COSY spectrum presented the connectivity of H-3 to H-2. H-2 and H-3 of compound 1 showed signals characteristic of the flavanone moieties.

Three proton signals at δ 6.79 (1H, *m*), 6.80 (1H, *m*), and 6.93 (1H, *d*, *J* = 1.0 Hz) were assigned to H-6', H-4', and H-2', respectively. In the ¹⁵C-NMR spectrum of compound 1, two oxygenated aromatic carbon signals were observed at δ 146.51 (*s*, C-3') and 146.83 (*s*, C-5'). Therefore, it was postulated that two hydroxyl groups were connected to C-3' and C-5'.

According to the instrumental analysis performed, as a result, compound 1 was characterized as 3',5',7-trihydroxy-flavanone.

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	δ_{C} (ppm)	COSY	NOESY	HMBC
2	5.32 (1H, <i>dd</i> , <i>J</i> = 3.0, 12.5 Hz)	81. 06 d	H-3	H-2'/H-6'	C-4
3	2.70 (1H, dd, J = 3.0, 17.0 Hz),	45.03 t	H-3/H-2		C-4/C-1//C-2
	3.00 (1H, <i>dd</i> , <i>J</i> = 12.5, 17.0 Hz)				
4		193.49 s			
5	7.72 (1H, d , $J = 9.0$ Hz)	129.82 d	H-6		C-4/C-9/C-7
6	6.50 (1H, dd, J=1.5, 9.0 Hz)	111.78 d	H-5		C-7/C-10/C-8
7		165.53 s			
8	6.35 (1H, d, J = 1.5 Hz)	103.85 d			C-10/C-6
9		166.92 s			
10		11 4.9 7 s			
1'		132.07 s			
2'	6.93 (1H, d , $J = 1.0$ Hz)	114.71 d		H-2	C-1'/C-2'/C-3'/C-4'/C-2
3'		146.51 s			
4'	6.80 (1H, <i>m</i>)	119.22 d			C-3'/C-2'
5'		146.83 s			
6	6.79 (1H, <i>m</i>)	116.27 d		H-2	C-1'/C-2'/C-2

Table 1. NMR data for compound 1 in methanol- d_{+}

Experimental Section

General Methods. The UV spectrum was recorded on a Hewlett Packard 8452A Diode Array Spectrometer. The IR spectrum was recorded with a JASCO FT/IR-5300 spectrophotometer. The EIMS and HREIMS were obtained with a JEOL JMS-SX102A. The NMR spectra (¹H, ¹³C, DEPT, COSY, NOESY, HMQC, HMBC) were recorded in methanol d_4 using tetramethylsilane (TMS) as an internal standard, with chemical shifts expressed in δ and coupling constants (J) in Hz. ¹H and ¹³C NMR spectra were obtained with a Varian Unity-Inova 500 MHz, operating at 500 MHz (¹H) and 125 MHz (13 C). The thin layer chromatography (TLC) was carried out on precoated silica gel 60 F₂₅₄ (0.2 mm, Merck) plates. The TLC plates were developed with solvent system A (toluene : ethyl formate : formic acid = 5:4:1, v/v/v) and B (acetone : ethyl acetate : $H_2O = 10 : 10 : 1$, v/v/v). The preparative TLC was performed on silica gel 60 $F_{254}\ (2.0\ mm,\ Merck)$ plates. The developed TLC plates were visualized under UV light at 254 nm and 365 nm. Silica gel 60 (40-100 µm, Kanto Chemical Co.) and Sephadex LH-20 (Amersham Pharmacia Biotech AB) were used for the column chromatography.

Plant Material. The wood of *A. fruticosa* was collected from Hadong-kun, Kyungnam, Korea in June, 2003 and identified by Dr. Y. H. Kwon (Korea National Arboretum, Pocheon, Korea). The voucher specimen (KNAb104-0019) has deposited at Korea Forest Research Institute, Seoul, Korea.

Extraction and Isolation. The air-dried and powdered wood of *A. fruticosa* was extracted three times with MeOH at room temperature for 3 days each. The combined MeOH extracts were concentrated under vacuum at 40 °C. The concentrated extract was partitioned with *n*-hexane, chloroform (CHCl₃), and ethyl acetate (EtOAc). The CHCl₃-soluble (180.0 g) was separated on the Sephadex LH-20

column (6.5×55.0 cm) using MeOH-EtOH (1 : 1, v/v) solvent system to yield 28 fractions (250.0 mL each). These fractions were divided into 3 portions (AWC-1~AWC-3) on the basis of TLC profiles. AWC-3 (10.0 g) was subjected to the silica gel column (6.5×45.0 cm) with benzene-MeOH (5:1, v/v) to yield 50 fractions (100 mL each). These fractions were divided into 3 portions (AWC-3-1~AWC-3-3). AWC-3-1 (1.9 g) was chromatographed on the silica gel column (5.5 \times 40.0 cm) with benzene-EtOAc (5 : 1, v/v) to yield 160 fractions (100 mL each). These fractions were divided into 5 portions (AWC-3-1-1~AWC-3-1-5). AWC-3-1-4 (290.0 mg) was subjected to the silica gel column (4.5 \times 40.0 cm) with CHCl₃-MeOH (17 : 1, v/v) to yield 300 fractions (15.0 g each). These fractions were divided into 2 portions (AWC-3-1-4-1~AWC-3-1-4-2). AWC-3-1-4-2 (120.0 mg) was separated on the silica gel column (4.5×40.0 cm) with *n*-hexane-acetone (2 : 1, v/v) to yield 300 fractions (10.0 g each). These fractions were divided into 4 portions (AWC-3-1-4-2-1~AWC-3-1-4-2-4). AWC-3-1-4-2-2 (210.0 mg) was chromatographed on the silica gel column (2.5 \times 50.0 cm) with CH₂Cl₂-MeOH (20 : 1, v/v) to yield 100 fractions (15.0 g each). These fractions were divided into 2 portions (AWC-3-1-4-2-2-1~AWC-3-1-4-2-2-2). AWC-3-1-4-2-2-2 (120.0 mg) was subjected to the silica gel column $(3.0 \times 60.0 \text{ cm})$ with CH₂Cl₂-MeOH (25 : 1, v/v) to yield 200 fractions (12.0 g each). These fractions were divided into 2 portions (AWC-3-1-4-2-2-2-1~AWC-3-1-4-2-2-2-2). AWC-3-1-4-2-2-2 (100.0 mg) was separated on the silica gel column (3.0 × 50.0 cm) CH₂Cl₂-MeOH (30 : 1, v/v) to yield 250 fractions (15.0 g each). These fractions were divided into 2 portions (AWC-3-1-4-2-2-2-1~AWC-3-1-4-2-2-2-2). AWC-3-1-4-2-2-2-2 (10.0 mg) was separated on the Sephadex LH-20 column (2.5 \times 70.0 cm) using acetone to yield 100 fractions (10.0 g each). These fractions were divided into 2 portions (AWC-3-1-4-2-2-2-2-1~AWC-3-1-4-2-2-2-2-2). Compound 1 (3.7 mg) was

428 Bull. Korean Chem. Soc. 2006, Vol. 27, No. 3

isolated from AWC-3-1-4-2-2-2-2-1.

3',5',7-Trihydroxyflavanone (1). Yellow amorphous solid. UV (MeOH) λ_{max} nm (log ε): 424 (3.13), 288 (3.36). UV (MeOH–0.1 M NaOH) λ_{max} nm (log ε): 434 (3.25), 336 (3.52). IR (KBr) ν_{max} : 3422 (OH), 2361, 1670 (C=O), 1282. EI-MS *m/z*: 272 ([M]⁻) (base ion), 255, 163, 150, 137. HREIMS *m/z*: 272.0679 ([M]⁺, calcd. for C₁₅H₁₂O₅, 272.0685). ¹H-NMR (methanol-*d*₄, 500 MHz), ¹³C-NMR (methanol-*d*₄, 125 MHz), COSY, NOESY, and HMBC: Table 1.

Acknowledgments. The authors thank for the Korea Basic Science Institute in Seoul for the performance of NMR experiments.

References

- Lee, T. B. *Illustrated Flora of Korea*, 5th Ed.; Hyangmoon Sa: Seoul, 1993; p 491.
- Li, L.; Wang, H. K. Journal of Natural Products 1993, 56, 690-698.
- Cho, J. Y.; Kim, P. S.; Park, J.; Yoo, E. S.; Baik, K. U.; Kim, Y. K.; Park, M. H. Journal of Ethnopharmacology 2000, 70, 127-133.
- 4. Shibata, H.; Shimizu, S. Heterocycles 1978, 10, 85.
- Reisch, J.; Gombos, M.; Szendrei, K.; Novak, I. *Phytochemisry* 1976, 15, 234-235.
- Konoshima, T.; Terada, H.; Kokumai, M.; Kozuka, M. Journal of Natural Products 1993, 56, 843-848.
- Ohyama, M.; Tanaka, T.; Iinuma, M. Phytochemisry 1998, 48, 907-909.