DOI QR코드

DOI QR Code

Diffusion-Controlled Reactions Involving a Reactant with Two Reaction Sites: Evaluation of the Utility of Wilemski-Fixman Closure Approximation

  • Uhm, Je-sik (Department of Chemistry, Seoul National University) ;
  • Lee, Jin-uk (Department of Chemistry, Seoul National University) ;
  • Eun, Chang-sun (Department of Chemistry, Seoul National University) ;
  • Lee, Sang-youb (Department of Chemistry, Seoul National University)
  • Published : 2006.08.20

Abstract

By using two different computer simulation methods, of which one produces exact results while the other is based on the Wilemski-Fixman closure approximation, we evaluate the utility of closure approximation in calculating the rates of diffusion-controlled reactions involving a reactant with multiple reaction sites. We find that errors in the estimates of steady-state rate constants due to closure approximation are not so large. We thus propose an approximate analytic expression for the rate constant based on the closure approximation.

Keywords

References

  1. Berg, H. C.; Purcell, E. M. Biophys. J. 1977, 20, 193 https://doi.org/10.1016/S0006-3495(77)85544-6
  2. Shoup, D.; Szabo, A. Biophys. J. 1982, 40, 33 https://doi.org/10.1016/S0006-3495(82)84455-X
  3. Zwanzig, R. Proc. Natl. Acad. Sci. 1990, 87, 5856 https://doi.org/10.1073/pnas.87.15.5856
  4. Zwanzig, R.; Szabo, A. Biophys. J. 1991, 60, 671 https://doi.org/10.1016/S0006-3495(91)82096-3
  5. Samson, R.; Deutch, J. M. J. Chem. Phys. 1977, 67, 847 https://doi.org/10.1063/1.434853
  6. Zoia, G.; Strieder, W. J. Chem. Phys. 1998, 108, 3114 https://doi.org/10.1063/1.475708
  7. Strieder, W.; Saddawi, S. J. Chem. Phys. 2000, 113, 10818 https://doi.org/10.1063/1.1323730
  8. McDonald, N.; Strieder, W. J. Chem. Phys. 2003, 118, 4598 https://doi.org/10.1063/1.1543937
  9. Traytak, S. D. J. Chem. Phys. 1996, 105, 10860 https://doi.org/10.1063/1.472893
  10. Wilemski, G.; Fixman, M. J. Chem. Phys. 1973, 58, 4009 https://doi.org/10.1063/1.1679757
  11. Weiss, G. H. J. Chem. Phys. 1984, 80, 2880 https://doi.org/10.1063/1.447037
  12. Szabo, A. J. Phys. Chem. 1989, 93, 6929 https://doi.org/10.1021/j100356a011
  13. Lee, S.; Karplus, M. J. Chem. Phys. 1987, 86, 1883 https://doi.org/10.1063/1.452140
  14. Lee, S.; Karplus, M. J. Chem. Phys. 1987, 86, 1904 https://doi.org/10.1063/1.452757
  15. Lee, S.; Karplus, M. J. Chem. Phys. 1992, 96, 1663 https://doi.org/10.1063/1.462914
  16. Yang, S.; Kim, J.; Lee, S. J. Chem. Phys. 1999, 111, 10119 https://doi.org/10.1063/1.480363
  17. Yang, S.; Han, H.; Lee, S. J. Phys. Chem. B 2001, 105, 6017 https://doi.org/10.1021/jp0102419
  18. Lee, J.; Yang, S.; Kim, J.; Lee, S. J. Chem. Phys. 2004, 120, 7564 https://doi.org/10.1063/1.1687680
  19. IMSL Library Reference Manual, ver. 1.1; IMSL: Houston, 1989
  20. Deutch, J. M.; Felderhof, B. U.; Saxton, M. J. J. Chem. Phys. 1976, 64, 4559 https://doi.org/10.1063/1.432088

Cited by

  1. Concentration effects on the rates of irreversible diffusion-influenced reactions vol.141, pp.8, 2014, https://doi.org/10.1063/1.4893340
  2. Memory Equations for Kinetics of Diffusion-Influenced Reactions vol.27, pp.10, 2006, https://doi.org/10.5012/bkcs.2006.27.10.1659
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450