DOI QR코드

DOI QR Code

The Oxidation of Hydrazobenzene Catalyzed by Cobalt Complexes in Nonaqueous Solvents

  • Kim, Stephen S.B. (Department of Chemistry, University of Ulsan) ;
  • Hommer, Roger B. (Department of Chemistry, University of Ulsan) ;
  • Cannon, Roderick D. (School of Chemical Sciences, University of East Anglia)
  • Published : 2006.02.20

Abstract

The oxidation of hydrazobenzene by molecular oxygen in the polar solvent methanol is catalysed by a Schiff's base complex Co(3MeOsalen) which is a synthetic oxygen carrier. The products are trans-azobenzene and water. The rate of the reaction has been studied spectrophotometrically and the rate law established. A mechanism involving a ternary complex of catalyst, hydrazobenzene and molecular oxygen has been proposed. The kinetic studies show that a ternary complex $CoL{\cdot}H_2AB{\cdot}O_2$ is involved in the rate determining step. The reactions are summarised in a catalytic cycle. The kinetic data suggest that a ternary complex involving Co(3MeOsalen), triphenyl-phosphine and molecular oxygen is catalytically acive species but at higher triphenylphosphine concentrations the catalyst becomes inactive. The destruction of the catalytic activity could be due to the catalyst becoming coordinated with triphenyl phosphine at both z axis sites of the complex e.g. Co (3MeOsalen)$(PPh_3)_2$.

Keywords

References

  1. Pfiffer, P.; Breith, E.; Lubbe, E.; Tsumaki, T. Justus Liebigs Ann Chem. 1933, 503, 84 https://doi.org/10.1002/jlac.19335030106
  2. Kim, H. N.; Lee, H. K.; Lee, S. W. Bull. Korean Chem. Soc. 2005, 26(6), 892 https://doi.org/10.5012/bkcs.2005.26.6.892
  3. Lee, N. H.; Byun, J. C.; Oh, T.-H. Bull. Korean Chem. Soc. 2005, 26(3), 454 https://doi.org/10.5012/bkcs.2005.26.3.454
  4. Tsumaki, T. Bull. Chem. Soc. Jpn. 1938, 13, 252 https://doi.org/10.1246/bcsj.13.252
  5. Jones, R. D.; Summerville, D. A.; Basolo, F. Chem. Rev. 1979, 79, 139 https://doi.org/10.1021/cr60318a002
  6. Perutz, M. F. Brit. Med. Bull. 1976, 32, 195 https://doi.org/10.1093/oxfordjournals.bmb.a071363
  7. Adduci, A. J. Chemtech. 1976, 6, 575
  8. Martell, A. E.; Niederhoffer, E. C. J. H.; Timmons, J. H. Chem. Rev. 1984, 84, 137 https://doi.org/10.1021/cr00060a003
  9. Smith, T. D.; Pilbrow, J. R. Coord. Chem. Rev. 1981, 39, 295 https://doi.org/10.1016/S0010-8545(00)82006-8
  10. Drago, R. S.; Corden, B. B. Acc. Chem. Res. 1980, 13, 353 https://doi.org/10.1021/ar50154a003
  11. Savitskii, A. V. J. Gen. Chem., USSR 1974, 44, 1518
  12. Zombeck, A.; Drago, R. S.; Corden, B. B.; Gaul, J. H. J. Am. Chem. Soc. 1981, 103, 7580 https://doi.org/10.1021/ja00415a027
  13. Nishinaga, A. Chem. Lett. 1975, 273
  14. Martell, A. E.; Bedell, S. A. Inorg. Chem. 1983, 22, 364 https://doi.org/10.1021/ic00144a037
  15. Savitskii, A. V.; Nelyubin, V. I. J. of General Chem. of the USSR 1979, 49, 2028
  16. Kim, J. C.; Lough, A. J. Bull. Korean Chem. Soc. 2005, 26(1), 169 https://doi.org/10.5012/bkcs.2005.26.1.169
  17. Nishinaga, A.; Tomita, H.; Nishizawa, K.; Matsuura, T. J. Chem. Soc., Dalton 1985, 107, 2903
  18. Lee, J.; Choe, J.-I.; Jung, S.; Ham, S. W. Bull. Korean Chem. Soc. 2006, 27(1), 33 https://doi.org/10.5012/bkcs.2006.27.1.033
  19. Drago, R. S.; Corden, B. B.; Perito, R. P. J. Am. Chem. Soc. 1985, 107, 2903 https://doi.org/10.1021/ja00296a012
  20. Drago, R. S.; Zombeck, A.; Hamilton, U. E. J. Am. Chem. Soc. 1982, 104, 6782 https://doi.org/10.1021/ja00388a051
  21. Cho, C. S.; Kim, D. Y.; Shim, S. C. Bull. Korean Chem. Soc. 2005, 26(5), 802 https://doi.org/10.5012/bkcs.2005.26.5.802
  22. Simandi, L. I.; Nemeth, S.; Szeverenyl, Z. Inorg. Chim. Acta 1980, 44, L107 https://doi.org/10.1016/S0020-1693(00)90970-8
  23. Manchot, W.; Herzog, J. Justus Liebigs Ann. Chem. 1901, 318, 331
  24. Walton, J. H.; Filson, G. W. J. Am. Chem. Soc. 1932, 54, 3228 https://doi.org/10.1021/ja01347a026
  25. Kaupp, G.; Russell, G. A. Chem. Ber. 1968, 101, 1729 https://doi.org/10.1002/cber.19681010525
  26. Homer, R. B.; Beckett, M. A. Inorg. Chim. Acta 1986, 115, L25 https://doi.org/10.1016/S0020-1693(00)87694-X
  27. Waters, W. A. Mechani of Oxidation of Organic Compounds; Wiley: London, 1964
  28. Kochi, J. K.; Sheldon, R. A. Adv. Catal. 1976, 25, 272 https://doi.org/10.1016/S0360-0564(08)60316-8
  29. Hinshelwood, C.; Blackadder, D. A. J. Chem. Phys. 1957, 2898
  30. Wolf, A. J. Mol. Struct. 1980, 67, 89 https://doi.org/10.1016/0022-2860(80)80353-X
  31. Jaffe, H. H.; Orchin, M. Theory and Applications of Ultraviolet Spectroscopy; John Wiley: London, 1966; p 430
  32. Gerson, F.; Heilbronner, E.; Van-Veen, A.; Wepster, B. M. Helv. Chim. Acta 1960, 43, 1889 https://doi.org/10.1002/hlca.19600430702
  33. Yamamoto, H.; Takayanagi, T.; Kwan, T. Bull. Chem. Soc. Jpn. 1975, 48, 2618 https://doi.org/10.1246/bcsj.48.2618
  34. Habibi-Yangjeh, A.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 26(1), 139 https://doi.org/10.5012/bkcs.2005.26.1.139
  35. Homer, R. B.; Cannon, R. D.; Kim, S. S. B. Bull. Korean Chem. Soc. 1985, 6, 115
  36. Rosenheim, L.; Speiser, D.; Heim, A. Inorg. Chem. 1974, 13, 1571 https://doi.org/10.1021/ic50137a006
  37. Dori et al. J. Am. Chem. Soc. 1975, 97, 3846 https://doi.org/10.1021/ja00846a064
  38. Beckett, M. A., Ph. D. Thesis, University of East Anglia, 1981
  39. Kim, S. S. B., Ph. D. Thesis, University of East Anglia, 1987
  40. Diel, H.; Liggett, L. M.; Hach, C. C.; Harrison, G. C. Iowa State Coll. Jour. Science 1947, 22, 110

Cited by

  1. Synthesis of azobenzenes: the coloured pieces of molecular materials vol.40, pp.7, 2011, https://doi.org/10.1039/c0cs00183j
  2. Facile Cu(I)-Catalyzed Oxidative Coupling of Anilines to Azo Compounds and Hydrazines with Diaziridinone under Mild Conditions vol.15, pp.8, 2013, https://doi.org/10.1021/ol4005917
  3. Dehydrogenation of the NH−NH Bond Triggered by Potassium tert‐Butoxide in Liquid Ammonia vol.129, pp.3, 2006, https://doi.org/10.1002/ange.201610371
  4. Dehydrogenation of the NH−NH Bond Triggered by Potassium tert‐Butoxide in Liquid Ammonia vol.56, pp.3, 2017, https://doi.org/10.1002/anie.201610371
  5. Photocatalysis Enabling Acceptorless Dehydrogenation of Diaryl Hydrazines at Room Temperature vol.8, pp.8, 2006, https://doi.org/10.1021/acscatal.8b01579
  6. Electrochemical dehydrogenation of hydrazines to azo compounds vol.21, pp.7, 2019, https://doi.org/10.1039/c9gc00515c
  7. Photocatalyzed oxidative dehydrogenation of hydrazobenzenes to azobenzenes vol.21, pp.15, 2006, https://doi.org/10.1039/c9gc01235d
  8. Visible-light-promoted oxidative dehydrogenation of hydrazobenzenes and transfer hydrogenation of azobenzenes vol.21, pp.15, 2006, https://doi.org/10.1039/c9gc01618j
  9. Oxidative dehydrogenation of hydrazines and diarylamines using a polyoxomolybdate-based iron catalyst vol.57, pp.62, 2006, https://doi.org/10.1039/d1cc02753k
  10. Hydrogen peroxide based oxidation of hydrazines using HBr catalyst vol.102, pp.None, 2006, https://doi.org/10.1016/j.tet.2021.132546