DOI QR코드

DOI QR Code

Quenching of Ofloxacin and Flumequine Fluorescence by Divalent Transition Metal Cations

  • Park, Hyoung-Ryun (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Oh, Chu-Ha (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lee, Hyeong-Chul (Department of Food & Nutrition, Song Won College) ;
  • Choi, Jae-Gyu (Department of Chemical Education and Research Institute of Life Science, Gyeongsang National University) ;
  • Jung, Beung-In (Department of Chemical Education and Research Institute of Life Science, Gyeongsang National University) ;
  • Bark, Ki-Min (Department of Chemical Education and Research Institute of Life Science, Gyeongsang National University)
  • Published : 2006.12.20

Abstract

This study examined the quenching of ofloxacin (OFL) and flumequine (FLU) fluorescence by $Cuj^{2+}$, $Ni^{2+}$, $Co^{2+}$ and $Mn^{2+}$ in an aqueous solution. The change in the fluorescence intensity and lifetime was measured at various temperatures as a function of the quencher concentration. According to the Stern-Volmer plots, the fluorescence emission was quenched by both collisions (dynamic quenching) and complex formation (static quenching) with the same quencher but the effect of static quenching was larger than that of dynamic quenching. Large static and dynamic quenching constants for both OFL and FLU support significant ion-dipole and orbital-orbital interactions between fluorophore and quencher. For both molecules, the static and dynamic quenching constants by $Cu^{2+}$ were the largest among all the metal quenchers examined in this study. In addition, both the static and dynamic quenching mechanisms by $Cu^{2+}$ were somewhat different from the quenching caused by other metals. Between $Ni^{2+}$ and FLU, a different form of chemical interaction was observed compared with the interaction by other metals. The change in the absorption spectra as a result of the addition of a quencher provided information on static quenching. With all these metals, the static quenching constant of FLU was larger than those of OFL. The fluorescence of OFL was quite insensitive to both the dynamic and static quenching compared with FLU. This property of OFL can be explained by the twisted intramolecular charge transfer in the excited state.

Keywords

References

  1. Appelbaum, P. C.; Hunter, P. A. Int. J. Antimicrob. Agent 2000, 16, 5 https://doi.org/10.1016/S0924-8579(00)00192-8
  2. Bal, P. J. Antimicrob. Chemother. 2000, 46 (Topic T1), 17 https://doi.org/10.1093/oxfordjournals.jac.a020889
  3. Ferguson, J. Photochem. Photobiol. 1995, 62, 954 https://doi.org/10.1111/j.1751-1097.1995.tb02392.x
  4. Andriole, V. T. In The Quinolones; Smith, J. T.; Lewin, C. S., Eds.; Academic press: New York, U.S.A., 1988; p 23
  5. Park, H. R.; Lee, H. C.; Kim, T. H.; Lee, J. K.; Yang, K.; Bark, K. M. Photochem. Photobiol. 2000, 71, 281 https://doi.org/10.1562/0031-8655(2000)071<0281:SPOFAA>2.0.CO;2
  6. Bark, K. M.; Kim, Y. S.; Park, C. H.; Lee, H. C.; Park, H. R. Bull. Korean Chem. Soc. 2005, 26, 1607 https://doi.org/10.5012/bkcs.2005.26.10.1607
  7. Park, H. R.; Kim, T. H.; Bark, K. M. Eur. J. Med. Chem. 2002, 37, 443 https://doi.org/10.1016/S0223-5234(02)01361-2
  8. Park, H. R.; Oh, C. H.; Lee, H. C.; Lim, S. R.; Yang, K.; Bark, K. M. Photochem. Photobiol. 2004, 80, 554 https://doi.org/10.1562/2004-04-23-RA-14.1
  9. Martinez, L.; Bilski, P.; Chignell, C. F. Photochem. Photobiol. 1996, 64, 911 https://doi.org/10.1111/j.1751-1097.1996.tb01855.x
  10. Mizuki, Y.; Fujiwara, I.; Yamaguchi, T. J. Antimicrob. Chemother. 1996, 37(Suppl. A), 41 https://doi.org/10.1093/jac/37.suppl_A.41
  11. Bazile-Pham Khac, S.; Moreau, N. J. J. Chrom. 1994, A 668, 241
  12. Ferguson, J. Photochem. Photobiol. 1995, 62, 954 https://doi.org/10.1111/j.1751-1097.1995.tb02392.x
  13. Slater, J.; Mildvan, A.; Loeb, L. Biochem. Biophys. Res. Commun. 1971, 44, 37 https://doi.org/10.1016/S0006-291X(71)80155-9
  14. Springgate, C.; Mildvan, A.; Abramson, R.; Engle, J.; Loeb, L. J. Biol. Chem. 1973, 248, 5987
  15. Valenzuela, P.; Morris, R.; Faras, A.; Levinson, W.; Rutter, W. Biochem. Biophys. Res. Commun. 1973, 53, 1036 https://doi.org/10.1016/0006-291X(73)90196-4
  16. Kang, J. S.; Kim, T. H.; Park, K. B.; Chung, B. H.; Youn, J. I. Photodermatol. Photoimmunol. Photomed. 1993, 9, 159
  17. Sun, Y. W.; Heo, E. P.; Cho, Y. H.; Bark, K. M.; Yoon, T. J.; Kim, T. H. Photodermatol. Photoimmunol. Photomed. 2001, 17, 172 https://doi.org/10.1034/j.1600-0781.2001.170406.x
  18. Goodpaster, J. V.; McGuffin, V. L. Anal. Chem. 2000, 72, 1072 https://doi.org/10.1021/ac991106j
  19. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, U.S.A., 1999
  20. Park, H. R.; Chung, K. Y.; Lee, H. C.; Lee, J. K.; Bark, K. M. Bull. Korean Chem. Soc. 2000, 21, 849
  21. Shannon, R. D.; Prewitt, C. T. Acta Cryst. 1970, B26, 1046
  22. Bark, K. M.; Forcé, R. K. Spectrochim. Acta 1993, 49(A), 1605 https://doi.org/10.1016/0584-8539(93)80117-S
  23. Eaton, D. F. Reference Compounds for Fluorescence Measurement; IUPAC Organic Chem. Division: Wilmington, U.S.A., 1987; p 1
  24. Demas, J. N.; Grosby, G. A. J. Phys. Chem. 1971, 75, 2463 https://doi.org/10.1021/j100685a009
  25. Zhang, J.; Bright, F. V. J. Phys. Chem. 1991, 95, 7900 https://doi.org/10.1021/j100173a064
  26. Lakowicz, J. R.; Lackzo, G.; Gryczynski, I.; Szmacinski, H.; Wiczk, W. J. Photochem. Photobiol. B. Biol. 1988, 2, 295 https://doi.org/10.1016/1011-1344(88)85050-4
  27. Jameson, D. M.; Gratton, E.; Hall, R. D. Appl. Spectrosc. Rev. 1984, 20, 105
  28. Kessler, M. A. Anal. Chim. Acta 1998, 364, 125 https://doi.org/10.1016/S0003-2670(98)00152-4
  29. Posokhov, Y.; Kus, M.; Biner, H.; Gumus, M. K.; Tugcu, F. T.; Aydemir, E.; Kaban, S.; Icli, S. J. Photochem. Photobiol. 2004, 161, 247 https://doi.org/10.1016/j.nainr.2003.08.005
  30. Fabbrizzi, L.; Licchelli, M.; Pallavicini, P. Acc. Chem. Res. 1999, 32, 846 https://doi.org/10.1021/ar990013l
  31. Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24, 197 https://doi.org/10.1039/cs9952400197
  32. Drevensek, P.; Turel, I.; Ulrih, N. P. J. Inorg. Biochem. 2003, 96, 407 https://doi.org/10.1016/S0162-0134(03)00179-X

Cited by

  1. Interaction of Clofazimine with Divalent Metal Ions: A Fluorescence Quenching Study vol.32, pp.10, 2011, https://doi.org/10.1080/01932691.2010.513314
  2. Investigations on Photoinduced Interaction of 9-Aminoacridine with Certain Catechols and Rutin vol.22, pp.4, 2012, https://doi.org/10.1007/s10895-012-1050-4
  3. Ofloxacin Metal Complexes: Synthesis, Characterization, Analytical Properties, and DNA Binding Studies vol.44, pp.10, 2014, https://doi.org/10.1080/15533174.2013.818020
  4. Complex formation equilibria between aluminum(III), gadolinium(III) and yttrium(III) ions and some fluoroquinolone ligands. Potentiometric and spectroscopic study vol.68, pp.24, 2015, https://doi.org/10.1080/00958972.2015.1089535
  5. Novel Ofloxacin-Loaded Microemulsion Formulations for Ocular Delivery vol.30, pp.4, 2014, https://doi.org/10.1089/jop.2013.0114
  6. Spectroscopic Properties of the Quercetin-Divalent Metal Complexes in Hydro-Organic Mixed Solvent vol.39, pp.8, 2018, https://doi.org/10.1002/bkcs.11532
  7. Binding Interaction of Captopril with Metal Ions: A Fluorescence Quenching Study vol.27, pp.9, 2009, https://doi.org/10.1002/cjoc.200990295
  8. ICT-based Alkynylpyrene vol.28, pp.11, 2006, https://doi.org/10.5012/bkcs.2007.28.11.2107
  9. Coumarin Appended Calix[4]arene as a Selective Fluorometric Sensor for Cu2+ Ion in Aqueous Solution vol.28, pp.4, 2006, https://doi.org/10.5012/bkcs.2007.28.4.682
  10. Tetradiazo(o-carboxy)phenylcalix[4]arene for Determination of Pb2+ Ion vol.28, pp.5, 2006, https://doi.org/10.5012/bkcs.2007.28.5.791
  11. Highly Selective Fluorescent Signaling for Al3+ in Bispyrenyl Polyether vol.28, pp.5, 2006, https://doi.org/10.5012/bkcs.2007.28.5.811
  12. Fluorescence Quenching of Norfloxacin by Divalent Transition Metal Cations vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1573
  13. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  14. Factors affecting nucleolytic efficiency of some ternary metal complexes with DNA binding and recognition domains. Crystal and molecular structure of Zn(phen)(edda) vol.102, pp.11, 2006, https://doi.org/10.1016/j.jinorgbio.2008.07.015
  15. Physicochemical Properties of Protoporphyrin IX by Metal Ions in Acetonitrile-Water Mixture Solution vol.31, pp.6, 2006, https://doi.org/10.5012/bkcs.2010.31.6.1633
  16. A study on the fluorescence quenching of 9-Aminoacridine by certain antioxidants vol.131, pp.11, 2006, https://doi.org/10.1016/j.jlumin.2011.05.050
  17. Fabrication of magnetic Fe3O4@nSiO2@mSiO2–NH2 core–shell mesoporous nanocomposite and its application for highly efficient ultrasound vol.40, pp.1, 2006, https://doi.org/10.1016/j.ultsonch.2017.06.027
  18. Development, Optimization, and In Vitro/In Vivo Characterization of Enhanced Lipid Nanoparticles for Ocular Delivery of Ofloxacin: the Influence of Pegylation and Chitosan Coating vol.20, pp.5, 2006, https://doi.org/10.1208/s12249-019-1371-6
  19. Fluorimetric Detection of Zn 2+ , Mg 2+ , and Fe 2+ with 3-Hydroxy-4-Pyridylisoquinoline as Fluorescent Probe vol.31, pp.1, 2021, https://doi.org/10.1007/s10895-020-02666-0
  20. Fluorescence Spectroscopy and Chemometrics: A Simple and Easy Way for the Monitoring of Fluoroquinolone Mixture Degradation vol.6, pp.7, 2021, https://doi.org/10.1021/acsomega.0c05370
  21. The complexation of levofloxacin hemihydrate with divalent metal ions in aqueous medium at variable temperatures: Combined UV-Visible spectroscopic and DFT studies vol.344, pp.None, 2021, https://doi.org/10.1016/j.molliq.2021.117916