DOI QR코드

DOI QR Code

Selection and Analysis of Genomic Sequence-Derived RNA Motifs Binding to C5 Protein

  • Kim, Kwang-sun (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Ryoo, Hye-jin (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Lee, June-Hyung (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Kim, Mee-hyun (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Kim, Tae-yeon (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Kim, Yool (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Han, Kook (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Lee, Seol-Hoon (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Lee, Young-hoon (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology)
  • Published : 2006.05.20

Abstract

Escherichia coli RNase P is a ribonucleoprotein composed of M1 RNA and C5 protein. Previously, analysis of RNA aptamers selected for C5 protein from a synthetic RNA library showed that C5 protein could bind various RNA molecules as an RNA binding protein. In this study, we searched cellular RNA motifs that could be recognized by C5 protein by a genomic SELEX approach. We found various C5 protein-binding RNA motifs derived from E. coli genomic sequences. Our results suggest that C5 protein interacts with various cellular RNA species in addition to M1 RNA.

Keywords

References

  1. Robertson, H. D.; Altman, S.; Smith, J. D. J. Biol. Chem. 1972, 247, 5243
  2. Bothwell, A. L.; Garber, R. L.; Altman, S. J. Biol. Chem. 1976, 251, 7709
  3. Bourgaize, D. B.; Fournier, M. J. Nature 1987, 325, 281 https://doi.org/10.1038/325281a0
  4. Komine, Y.; Kitabatake, M.; Yokogawa, T.; Nishikawa, K.;Inokuchi, H. Proc. Natl. Acad. Sci. USA 1994, 91, 9223
  5. Li, Y.; Altman, S. Proc. Natl. Acad. Sci. USA 2003, 100, 13213
  6. Kurz, J. C.; Fierke, C. A. Curr. Opin. Chem. Biol. 2000, 4, 553 https://doi.org/10.1016/S1367-5931(00)00131-9
  7. Frank, D. N.; Pace, N. R. Annu. Rev. Biochem. 1998, 67, 153 https://doi.org/10.1146/annurev.biochem.67.1.153
  8. Hansen, F. G.; Hansen, E. B.; Atlung, T. Gene 1985, 38, 85 https://doi.org/10.1016/0378-1119(85)90206-9
  9. Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S.Cell 1983, 35, 849 https://doi.org/10.1016/0092-8674(83)90117-4
  10. Darr, S. C.; Zito, K.; Smith, D.; Pace, N. R. Biochemistry 1992,31, 328 https://doi.org/10.1021/bi00117a003
  11. Schedl, P.; Primakoff, P. Proc. Natl. Acad. Sci. USA 1973, 70, 2091
  12. Sakano, H.; Yamada, S.; Ikemura, T.; Shimura, Y.; Ozeki, H. Nucleic Acids Res.1974, 1, 355 https://doi.org/10.1093/nar/1.3.355
  13. Kirsebom, L. A.; Altman, S. J. Mol. Biol.1989, 207, 837 https://doi.org/10.1016/0022-2836(89)90250-7
  14. Kirsebom, L. A.; Svard, S. G. Nucleic Acids Res. 1992, 20, 425 https://doi.org/10.1093/nar/20.3.425
  15. Peck-Miller, K. A.; Altman, S. J. Mol. Biol. 1991, 221, 1
  16. Lee, J. H.; Kim, H.; Ko, J.; Lee, Y. Nucleic Acids Res. 2002, 30, 5360 https://doi.org/10.1093/nar/gkf694
  17. Kole, R.; Baer, M. F.; Stark, B. C.; Altman, S. Cell 1980, 19, 881 https://doi.org/10.1016/0092-8674(80)90079-3
  18. Gold, L.; Brown, D.; He, Y.; Shtatland, T.; Singer, B. S.; Wu, Y. Proc. Natl. Acad. Sci. USA1997, 94, 59
  19. Singer, B. S.; Shtatland, T.; Brown, D.; Gold, L. Nucleic Acids Res.1997, 25, 781 https://doi.org/10.1093/nar/25.4.781
  20. Cho, B. Bull. Korean Chem. Soc. 2005, 26, 2093 https://doi.org/10.5012/bkcs.2005.26.12.2093
  21. Talbot, S. J.; Altman, S. Biochemistry 1994, 33, 1399 https://doi.org/10.1021/bi00172a016
  22. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: ALaboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, USA, 1989
  23. Vioque, A.; Arnez, J.; Altman, S. J. Mol. Biol.1988, 202, 835 https://doi.org/10.1016/0022-2836(88)90562-1
  24. Shtatland, T.; Gill, S. C.; Javornik, B. E.; Johansson, H. E.; Singer,B. S.; Uhlenbeck, O. C.; Zichi, D. A.; Gold, L. Nucleic Acids Res. 2000, 28, e93 https://doi.org/10.1093/nar/28.21.e93
  25. Hass, E. S.; Brown, J. W.; Pitulle, C.; Pace, N. R. Proc. Natl.Acad. Sci. USA 1994, 91, 2527
  26. Li, Y.; Cole, K.; Altman, S. RNA 2003, 9, 518 https://doi.org/10.1261/rna.2198203

Cited by

  1. Proximity of Both Ends of Stems P3 and P4 of Self-kinasing RNA by ATP vol.28, pp.4, 2006, https://doi.org/10.5012/bkcs.2007.28.4.689
  2. Expression of a Small Protein Encoded by the 3' Flanking Sequence of the Escherichia coli rnpB Gene vol.28, pp.6, 2007, https://doi.org/10.5012/bkcs.2007.28.6.1010
  3. RNase P-dependent Cleavage of Polycistronic mRNAs within Their Downstream Coding Regions in Escherichia coli vol.29, pp.6, 2006, https://doi.org/10.5012/bkcs.2008.29.6.1137