DOI QR코드

DOI QR Code

Effects of Solvent Viscosity on Conformational Dynamics of Heme-pocket in Myoglobin and Hemoglobin

  • Kim, Seong-Heun (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lim, Man-Ho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2006.11.20

Abstract

The influence of solvent viscosity on conformational dynamics of the heme-pocket, a small vacant site near the binding site of myoglobin (Mb) and hemoglobin (Hb), and playing a functionally important role by serving as a station in ligand binding and escape, was studied by probing time-resolved vibrational spectra of CO photodissociated from MbCO and HbCO in $D_2O$, 75 wt% glycerol/$D_2O$, and trehalose at 283 K. Two absorption bands ($B_1$ and $B_2$) of the sample in viscous solvents, arising from CO in the heme pocket, are very similar to those in $D_2O$. Two bands in Mb and Hb under all three solvents exhibit very similar nonexponential spectral evolution ($B_1$ band; blue shifting and broadening, $B_2$ band; narrowing with a negligible shifting), suggesting that in the present experimental time window of 100 ps, the extents of the spectral shift and narrowing is much influenced neither by the viscosity of solvent nor by the quaternary contact of Hb. Spectral evolution can be described by a biexponential function with a fast universal time constant of 0.52 ps and a slow time constant ranging from 13 to 32 ps. For both proteins in all three solvents majority of spectral evolution occurs with the fast universal time constant. The magnitude of the slow rate in the spectral shift of B1 band decreases with increasing solvent viscosity, indicating that it is influenced by global conformational change which is retarded in viscous solvent, thereby serve as a reporter of global conformational change of heme proteins after deligation.

Keywords

References

  1. Ansari, A.; Berendzen, J.; Braunstein, D. K.; Cowen, B. R.; Frauenfelder, H.; Hong, M. K.; Iben, I. E. T.; Johnson, J. B.; Ormos, P. et al. Biophys. Chem. 1987, 26, 337-355 https://doi.org/10.1016/0301-4622(87)80034-0
  2. Vitkup, D.; Ringel, D.; Petsko, G. A.; Karplus, M. Nature Struct. Biol. 2000, 7, 34-38 https://doi.org/10.1038/71231
  3. Beece, D.; Eisenstein, L.; Frauenfelder, H.; Good, D.; Marden, M. C.; Reinisch, L.; Reynolds, A. H.; Sorensen, L. B.; Yue, K. T. Biochem. 1980, 19, 5147-5157 https://doi.org/10.1021/bi00564a001
  4. Hagen, S. J.; Hofrichter, J.; Eaton, W. A. J. Phys. Chem. 1996, 100, 12008-12021 https://doi.org/10.1021/jp960219t
  5. Gottfried, D. S.; Peterson, E. S.; Sheikh, A. G.; Wang, J.; Yang, M.; Friedman, J. M. J. Phys. Chem. 1996, 100, 12034-12042 https://doi.org/10.1021/jp9609489
  6. Springer, B. A.; Sligar, S. G.; Olson, J. S.; Phillips, G. N., Jr. Chem. Rev. 1994, 94, 699-714 https://doi.org/10.1021/cr00027a007
  7. Dantsker, D.; Samuni, U.; Friedman, J. M.; Agmon, N. Biochim. Biophys. Acta, Proteins and Proteomics 2005, 1749, 234-251 https://doi.org/10.1016/j.bbapap.2005.04.002
  8. Quillin, M. L.; Arduini, R. M.; Olson, J. S.; Phillips, G. N., Jr. J. Mol. Biol. 1993, 234, 140-155 https://doi.org/10.1006/jmbi.1993.1569
  9. Barrick, D. Biochem. 1994, 33, 6546-6554 https://doi.org/10.1021/bi00187a023
  10. Clore, G. M.; Gronenborn, A. M. Prog. Nucl. Mag. Res. Spec. 1991, 23, 43-92 https://doi.org/10.1016/0079-6565(91)80002-J
  11. Braunstein, D. P.; Chu, K.; Egeberg, K. D.; Frauenfelder, H.; Mourant, J. R.; Nienhaus, G. U.; Ormos, P.; Sligar, S. G.; Springer, B. A.; Young, R. D. Biophys. J. 1993, 65, 2447-2454 https://doi.org/10.1016/S0006-3495(93)81310-9
  12. Jackson, T. A.; Lim, M.; Anfinrud, P. A. Chem. Phys. 1994, 180, 131-140 https://doi.org/10.1016/0301-0104(93)E0414-Q
  13. Janes, S. M.; Dalickas, G. A.; Eaton, W. A.; Hochstrasser, R. M. Biophys. J. 1988, 54, 545-549 https://doi.org/10.1016/S0006-3495(88)82987-4
  14. Oldfield, E.; Guo, K.; Augspurger, J. D.; Dykstra, C. E. J. Am. Chem. Soc. 1991, 113, 7537-7541 https://doi.org/10.1021/ja00020a014
  15. Elber, R.; Karplus, M. Science 1987, 235, 318-321 https://doi.org/10.1126/science.3798113
  16. Perutz, M. F.; Mathews, F. S. J. Mol. Biol. 1966, 21, 199-202 https://doi.org/10.1016/0022-2836(66)90088-X
  17. Takano, T. J. Mol. Biol. 1977, 110, 569-584 https://doi.org/10.1016/S0022-2836(77)80112-5
  18. Stryer, L. Biochemistry; San Francisco, 1988; Vol. 3
  19. Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Chem. Phys. 1995, 102, 4355-4366 https://doi.org/10.1063/1.469484
  20. Lim, M.; Jackson, T. A.; Anfinrud, P. A. Science 1995, 269, 962- 966 https://doi.org/10.1126/science.7638619
  21. Lim, M.; Jackson, T. A.; Anfinrud, P. A. Nature Struct. Biol. 1997, 4, 209-214 https://doi.org/10.1038/nsb0397-209
  22. Ansari, A.; Jones, C. M.; Henry, E. R.; Hofrichter, J.; Eaton, W. A. Science 1992, 256, 1796-1798 https://doi.org/10.1126/science.1615323
  23. McClain, B. L.; Finkelstein, I. J.; Fayer, M. D. J. Am. Chem. Soc. 2004, 126, 15702-15710 https://doi.org/10.1021/ja0454790
  24. Librizzi, F.; Viappiani, C.; Abbruzzetti, S.; Cordone, L. J. Chem. Phys. 2002, 116, 1193-1200 https://doi.org/10.1063/1.1426409
  25. Green, J. L.; Angell, C. A. J. Phys. Chem. 1989, 93, 2880-2882 https://doi.org/10.1021/j100345a006
  26. Crowe, L. M.; Reid, D. S.; Crowe, J. H. Biophys. J. 1996, 71, 2087-2093 https://doi.org/10.1016/S0006-3495(96)79407-9
  27. Kim, S.; Heo, J.; Lim, M. Bull. Korean Chem. Soc. 2005, 26, 151- 156 https://doi.org/10.5012/bkcs.2005.26.1.151
  28. Kim, S.; Jin, G.; Lim, M. J. Phys. Chem. B 2004, 108, 20366- 20375 https://doi.org/10.1021/jp0489020
  29. Park, J.; Kim, S.; Lim, M. Bull. Korean Chem. Soc. 2005, 26, 995- 997 https://doi.org/10.5012/bkcs.2005.26.6.995
  30. Lim, M.; Wolford, M. F.; Hamm, P.; Hochstrasser, R. M. Chem. Phys. Lett. 1998, 290, 355-362 https://doi.org/10.1016/S0009-2614(98)00533-8
  31. Hamm, P.; Lim, M.; Hochstrasser, R. M. J. Phys. Chem. B 1998, 102, 6123-6138 https://doi.org/10.1021/jp9813286
  32. Hamm, P.; Kaindl, R. A.; Stenger, J. Opt. Lett. 2000, 25, 1798- 1800 https://doi.org/10.1364/OL.25.001798
  33. Lim, M. Bull. Korean Chem. Soc. 2002, 23, 865-871 https://doi.org/10.5012/bkcs.2002.23.6.865
  34. Venyaminov, S. Y.; Prendergast, F. G. Anal. Biochem. 1997, 248, 234-245 https://doi.org/10.1006/abio.1997.2136
  35. Lian, T.; Locke, B.; Kholodenko, Y.; Hochstrasser, R. M. J. Phys. Chem. 1994, 98, 11648-11656 https://doi.org/10.1021/j100096a005
  36. Li, P.; Champion, P. M. Biophys. J. 1994, 66, 430-436 https://doi.org/10.1016/S0006-3495(94)80793-3
  37. Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Phys. Chem. 1996, 100, 12043-12051 https://doi.org/10.1021/jp9536458
  38. Lingle, R., Jr.; Xu, X.; Zhu, H.; Yu, S. C.; Hopkins, J. B. J. Phys. Chem. 1991, 95, 9320-9331 https://doi.org/10.1021/j100176a053
  39. Lingle, R., Jr.; Xu, X.; Zhu, H.; Yu, S. C.; Hopkins, J. B.; Straub, K. D. J. Am. Chem. Soc. 1991, 113, 3992-3994 https://doi.org/10.1021/ja00010a052
  40. Sagnella, D. E.; Straub, J. E.; Jackson, T. A.; Lim, M.; Anfinrud, P. A. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14324-14329 https://doi.org/10.1073/pnas.96.25.14324
  41. Alben, J. O.; Beece, D.; Bowne, S. F.; Doster, W.; Eisenstein, L.; Frauenfelder, H.; Good, D.; McDonald, J. D.; Marden, M. C. et al. Proc. Nat. Acad. Sci. 1982, 79, 3744-3748 https://doi.org/10.1073/pnas.79.12.3744
  42. Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Am. Chem. Soc. 2004, 126, 7946-7957 https://doi.org/10.1021/ja035475f
  43. Kim, S.; Lim, M. J. Am. Chem. Soc. 2005, 127, 5786-5787 https://doi.org/10.1021/ja050734h
  44. Anfinrud, P. A.; Han, C.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 8387-8391 https://doi.org/10.1073/pnas.86.21.8387
  45. Petrich, J. W.; Poyart, C.; Martin, J. L. Biochem. 1988, 27, 4049- 4060 https://doi.org/10.1021/bi00411a022
  46. Kim, S.; Heo, J.; Lim, M. J. Am. Chem. Soc. 2006, 128, 2810- 2811 https://doi.org/10.1021/ja058201w
  47. Henry, E. R.; Sommer, J. H.; Hofrichter, J.; Eaton, W. A. J. Mol. Biol. 1983, 166, 443-451 https://doi.org/10.1016/S0022-2836(83)80094-1
  48. Anfinrud, P. A.; Lim, M.; Jackson, T. A. Proc. of SPIE- Internat. Soc. Opt. Eng. 1994, 2138, 107-115
  49. Kuczera, K.; Lambry, J. C.; Martin, J. L.; Karplus, M. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5805-5807 https://doi.org/10.1073/pnas.90.12.5805
  50. Lim, M.; Jackson, T. A.; Anfinrud, P. A. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5801-5804 https://doi.org/10.1073/pnas.90.12.5801

Cited by

  1. Protein Conformation-Controlled Rebinding Barrier of NO and Its Binding Trajectories in Myoglobin and Hemoglobin at Room Temperature vol.116, pp.20, 2012, https://doi.org/10.1021/jp300176q
  2. Direct Observation of Ligand Rebinding Pathways in Hemoglobin Using Femtosecond Mid-IR Spectroscopy vol.116, pp.22, 2012, https://doi.org/10.1021/jp3026495
  3. Photoexcitation Dynamics of NO-Bound Ferric Myoglobin Investigated by Femtosecond Vibrational Spectroscopy vol.117, pp.10, 2013, https://doi.org/10.1021/jp400055d
  4. Geminate rebinding dynamics of nitric oxide to ferric hemoglobin in D2O solution vol.12, pp.6, 2013, https://doi.org/10.1039/c3pp50014d
  5. Rebinding dynamics of NO to microperoxidase-8 probed by time-resolved vibrational spectroscopy vol.18, pp.7, 2016, https://doi.org/10.1039/C5CP06336A
  6. Conformational Dynamics of Heme-pocket in Myoglobin Encapsulated in Silica Sol-gel Glasses vol.28, pp.2, 2006, https://doi.org/10.5012/bkcs.2007.28.2.339
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. Neutron Spin-Echo Studies of Hemoglobin and Myoglobin: Multiscale Internal Dynamics vol.397, pp.2, 2010, https://doi.org/10.1016/j.jmb.2010.01.029