DOI QR코드

DOI QR Code

Photodissociation Dynamics of Formic Acid at 206 nm

  • Kang, Tae-Yeon (Department of Chemistry, College of Natural Sciences, Kangwon National University) ;
  • Kim, Hong-Lae (Department of Chemistry, College of Natural Sciences, Kangwon National University)
  • Published : 2006.12.20

Abstract

The photodissociation dynamics of formic acid (HCOOH) at 206 nm have been investigated from rotationally resolved laser induced fluorescence spectra of OH ($^2\Pi$) fragments produced exclusively in the ground state. From the spectra, the rotational energy of the fragments was measured to be $820\;{\pm}\;50\;cm^{-1}$. The translational energy released in the products, which is 87% of the total available energy of the system, was also measured from analyses of the Doppler profiles. Joining these data with quantum chemical molecular orbital calculations, we have concluded that the dissociation should take place along the S1 surface with an exit channel barrier and also that the energy partitioning is determined at the exit channel.

Keywords

References

  1. Ng, T. L.; Bell, S. J. Mol. Spectros. 1974, 50, 166 https://doi.org/10.1016/0022-2852(74)90225-2
  2. Demoulin, D. Chem. Phys. 1976, 17, 471 https://doi.org/10.1016/S0301-0104(76)80010-9
  3. Fridh, C. J. Chem. Soc. Faraday Trans. II 1978, 74, 190 https://doi.org/10.1039/f29787400190
  4. Ebata, T.; Fujii, A.; Amano, T.; Ito, M. J. Phys. Chem. 1987, 91, 6095 https://doi.org/10.1021/j100308a008
  5. Brouard, M.; O'Mahony, J. Chem. Phys. Lett. 1988, 149, 45 https://doi.org/10.1016/0009-2614(88)80346-4
  6. Ebata, T.; Amano, T.; Ito, M. J. Chem. Phys. 1989, 90, 112 https://doi.org/10.1063/1.456515
  7. Langford, S. R.; Batten, A. D.; Kono, M.; Ashfold, M. N. R. J. Chem. Soc. Faraday Trans. 1997, 93, 3757 https://doi.org/10.1039/a704119e
  8. Shin, S. K.; Han, E. J.; Kim, H. L. J. Photochem. Photobiol. A Chemistry 1998, 118, 71 https://doi.org/10.1016/S1010-6030(98)00370-0
  9. Lee, K. W.; Lee, K. S.; Jung, K. H.; Volpp, H. R. J. Chem. Phys. 2002, 117, 9266 https://doi.org/10.1063/1.1514587
  10. He, H. Y.; Fang, W. H. J. Am. Chem. Soc. 2003, 125, 16139 https://doi.org/10.1021/ja0363157
  11. Singleton, D. L.; Paraskevopoulos, G.; Irwin, R. S. J. Phys. Chem. 1990, 94, 695 https://doi.org/10.1021/j100365a034
  12. Ioannoni, F.; Moule, D. C.; Clouthier, D. J. J. Phys. Chem. 1990, 94, 2290 https://doi.org/10.1021/j100369a018
  13. Brouard, M.; Simons, J. P.; Wang, J. X. Faraday Discuss. Chem. Soc. 1991, 91, 63 https://doi.org/10.1039/dc9919100063
  14. Su, H.; He, Y.; Kong, F.; Fang, W.; Liu, R. J. Chem. Phys. 2000, 113, 1891 https://doi.org/10.1063/1.482076
  15. Borges, Jr. I.; Rocha, A. B.; Martinez-Nunez, E.; Vazquez, S. Chem. Phys. Lett. 2005, 407, 166 https://doi.org/10.1016/j.cplett.2005.03.077
  16. Leu, G. H.; Huang, C. L.; Lee, S. H.; Lee, Y. C.; Chen, I. C. J. Chem. Phys. 1998, 109, 9340 https://doi.org/10.1063/1.477595
  17. Cruse, H. A.; Softley, T. P. J. Chem. Phys. 2005, 122, 124303 https://doi.org/10.1063/1.1861886
  18. Thompson, K. C.; Crittenden, D. L.; Kable, S. H.; Jordan, M. J. T. J. Chem. Phys. 2006, 124, 44302 https://doi.org/10.1063/1.2139672
  19. Jolly, G. S.; Singleton, D. L.; Paraskevopoulos, G. J. Phys. Chem. 1987, 91, 3463 https://doi.org/10.1021/j100297a001
  20. Dieke, G. H.; Crosswhite, H. M. J. Quant. Spectros. Radiat. Transfer 1962, 2, 97 https://doi.org/10.1016/0022-4073(62)90061-4
  21. Chidsey, I. L.; Crosley, D. R. J. Quant. Spectros. Radiat. Transfer 1980, 23, 187 https://doi.org/10.1016/0022-4073(80)90006-0
  22. Kang, T. Y.; Shin, S. K.; Kim, H. L. Bull. Korean Chem. Soc. 2004, 25, 1130 https://doi.org/10.5012/bkcs.2004.25.8.1130
  23. Walsh, A. D. J. Chem. Soc. (London) 1953, 1953, 2306
  24. Atkinson, R.; Baulch, R. A.; Hampson Jr., R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data 1999, 28, 191 https://doi.org/10.1063/1.556048
  25. Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3626 https://doi.org/10.1063/1.1677740

Cited by

  1. Photolysis of HCOOH monomer and dimer in solid argon: Raman characterization of in situ formed molecular complexes vol.12, pp.26, 2010, https://doi.org/10.1039/b926658e
  2. Photodissociation of Methane at Lyman Alpha (121.6 nm) vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.177
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. Low Damage Reductive Patterning of Oxidized Alkyl Self-Assembled Monolayers through Vacuum Ultraviolet Light Irradiation in an Evacuated Environment vol.33, pp.41, 2017, https://doi.org/10.1021/acs.langmuir.7b02739
  5. Roaming Dynamics in the Photodissociation of Formic Acid at 230 nm vol.123, pp.17, 2006, https://doi.org/10.1021/acs.jpca.9b00724