DOI QR코드

DOI QR Code

Preparation and Properties of Novel Biodegradable Hydrogel based on Cationic Polyaspartamide Derivative

  • Moon, Jong-Rok (Polymer Technology Institute, Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Bong-Seop (Polymer Technology Institute, Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Ji-Heung (Polymer Technology Institute, Department of Chemical Engineering, Sungkyunkwan University)
  • Published : 2006.01.20

Abstract

Novel copolymers consisting of poly(2-hydroxyethyl aspartamide-co-N,N'-dimethyl-1,3-propane aspartamide) (PHEA-DPA) were prepared from polysuccinimide (PSI), which is the thermal polycondensation product of aspartic acid, via a ring-opening reaction with N,N'-dimethyl-1,3-propane diamine (DPA) and ethanolamine. The prepared water-soluble copolymer was then crosslinked by reacting it with hexamethylene diisocyanate to provide the corresponding gel. The swelling behavior and morphology of the crosslinked hydrogels were investigated. The degree of swelling decreased with increasing crosslinking reagent due to the higher crosslinking density. It was also confirmed that the swelling property is affected by pH. At low pH (< pH 4), swelling is increased due to the ionization of DPA with a tertiary amine moiety. In addition, a reversible swelling and de-swelling behavior was demonstrated by adjusting the pH of the solution. The prepared hydrogels showed a well-interconnected microporous structure with regular 5-20 $\mu$m sized pores.

Keywords

References

  1. Langer, R.; Peppas, N. A. AIChE Journal 2003, 49(12), 2990 https://doi.org/10.1002/aic.690491202
  2. Lee, K. Y.; Mooney, D. J. Chem. Rev. 2001, 101, 1869 https://doi.org/10.1021/cr000108x
  3. Gil, E. S.; Hudson, S. M. Prog. Polym. Sci. 2004, 29, 1173 https://doi.org/10.1016/j.progpolymsci.2004.08.003
  4. Neri, P.; Antoni, G.; Benvenuti, F.; Colola, F.; Gazzei, G. J. Med. Chem. 1972, 16, 893 https://doi.org/10.1021/jm00266a006
  5. Wolk, S. K.; Swift, G.; Paik, Y. H.; Yocom, K. M.; Smith, R. L.; Simon, E. S. Macromolecules 1994, 27, 7613 https://doi.org/10.1021/ma00104a016
  6. Nakata, T.; Yoshitake, M.; Matsubara, K.; Tomida, M.; Kakuchi, T. Macromolecules 1998, 31, 2107 https://doi.org/10.1021/ma971629y
  7. Andrade, J. D. Hydrogels for Medical and Related Application, ACS Symp. Ser. No. 631; American Chemical Society: Washington, D.C. 1996
  8. Min, S. K.; Kim, J.-H. Korean Polym. J. 2001, 9, 143
  9. Kim, J.-H.; Lee, J. H.; Yoon, S.-W. J. Ind. Eng. Chem. 2002, 8, 138 https://doi.org/10.1021/i500002a014
  10. Yoshimura, T.; Ochi, Y.; Fujioka, R. Polymer Bulletin 2005, 55, 377 https://doi.org/10.1007/s00289-005-0451-9
  11. Pitarresi, G.; Tomarchio, V.; Cavallaro, G.; Giammona, G. J. Bioact. Compat. Polym. 1996, 11, 328 https://doi.org/10.1177/088391159601100405
  12. Caldwell, G.; Nense, E. W.; Perlwitz, A. Z. J. Appl. Polym. Sci. 1997, 66, 911 https://doi.org/10.1002/(SICI)1097-4628(19971031)66:5<911::AID-APP11>3.0.CO;2-Q
  13. Van der Merwe, T.; Boneschans, B.; Zore, B.; Breytenbach, J.; Zovko, M. International Journal of Pharmaceutics 2002, 241, 223 https://doi.org/10.1016/S0378-5173(02)00197-7
  14. Gavallaro, G.; Licciardi, M.; Giammona, G.; Caliceti, P.; Semenzato, A.; Salmaso, S. Journal of Controlled Release 2003, 89, 285 https://doi.org/10.1016/S0168-3659(03)00121-4
  15. Mendichi, R.; Schieroni, A. G.; Cavallaro, G.; Licciardi, M.; Giammona, G. Polymer 2003, 44, 4871 https://doi.org/10.1016/S0032-3861(03)00486-5
  16. Jeong, J. H.; Kang, H. S.; Yang, S. R.; Kim, J. Polymer 2003, 44, 583 https://doi.org/10.1016/S0032-3861(02)00816-9
  17. Pitaresi, G.; Pierro, P.; Giammona, G.; Iemma, F.; Muzzalupo, R.; Picci, N. Biomaterial 2004, 25, 4333 https://doi.org/10.1016/j.biomaterials.2003.11.015
  18. Kim, J. H.; Sim, S. J.; Lee, D. H.; Kim, D.; Lee, Y. K.; Chung, D. J.; Kim, J.-H. Polymer J. 2004, 36, 943 https://doi.org/10.1295/polymj.36.943
  19. Kim, J. H.; Sim, S. J.; Lee, D. H.; Kim, D.; Lee, Y. K.; Kim, J.-H. Polymer(Korea) 2005, 29, 518 https://doi.org/10.1016/0032-3861(88)90372-2
  20. Yoon, S. W.; Chung, D. J.; Kim, J.-H. J. Appl. Polym. Sci. 2003, 90, 3741 https://doi.org/10.1002/app.13075
  21. Tachibana, Y.; Kurisawa, M.; Uyama, H.; Kakuchi, T.; Kobayshi, S. Chem. Lett. 2003, 32(4), 374 https://doi.org/10.1246/cl.2003.374
  22. Tachibana, Y.; Kurisawa, M.; Uyama, H.; Kakuchi, T.; Kobayshi, S. Chem. Comm. 2003, 106
  23. Takeuchi, Y.; Uyama, H.; Tomoshige, N.; Watanabe, E.; Tachibana, Y.; Kobayashi, S. J. Polym. Sci., Polym. Chem. 2006, 44, 671 https://doi.org/10.1002/pola.21189
  24. Chen, H.; Xu, W.; Chen, T.; Yang, W.; Hu, J.; Wang, C. Polymer 2005, 46, 1821 https://doi.org/10.1016/j.polymer.2004.12.042
  25. Watanabe, E.; Tomoshige, N. Chem. Lett. 2005, 34(6), 876 https://doi.org/10.1246/cl.2005.876

Cited by

  1. Biodegradable thermo- and ph-responsive hydrogels based on amphiphilic polyaspartamide derivatives containingN,N-Diisopropylamine pendants vol.16, pp.6, 2008, https://doi.org/10.1007/BF03218549
  2. Photo-crosslinked polyaspartamide hybrid gel containing thermo-responsive Pluronic triblock copolymer vol.18, pp.2, 2011, https://doi.org/10.1007/s10965-010-9415-3
  3. Synthesis and self-assembly behavior of novel polyaspartamide derivatives for anti-tumor drug delivery vol.289, pp.1, 2011, https://doi.org/10.1007/s00396-010-2307-6
  4. Synthesis and Properties of Novel Y-type Nonlinear Optical Polyester Containing Dioxynitroazobenzene Group with Enhanced Thermal Stability of Dipole Alignment vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3361
  5. Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA- Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3191
  6. Miscible Blend and Semi-IPN Gel of Poly(hydroxyethyl aspartamide) with Poly(N-vinyl pyrrolidone) vol.36, pp.5, 2012, https://doi.org/10.7317/pk.2012.36.5.617
  7. Temperature-responsive drug delivery systems based on polyaspartamides with isopropylamine pendant groups vol.9, pp.30, 2013, https://doi.org/10.1039/c3sm50904d
  8. Modelling and simulation of hydro-gel growth mechanism by analysis of experimental data vol.32, pp.3, 2014, https://doi.org/10.1007/s10118-014-1405-1
  9. -responsive swelling behavior and metal-ion adsorption properties in novel histamine-conjugated polyaspartamide hydrogel vol.133, pp.16, 2015, https://doi.org/10.1002/app.43305
  10. Biodegradable and pH-Responsive Nanoparticles Designed for Site-Specific Delivery in Agriculture vol.16, pp.4, 2015, https://doi.org/10.1021/acs.biomac.5b00069
  11. Preparation of novel hybrid gels from polyaspartamides and natural alginate or hyaluronate by click reaction vol.22, pp.3, 2015, https://doi.org/10.1007/s10965-014-0649-3
  12. Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide vol.295, pp.4, 2017, https://doi.org/10.1007/s00396-017-4051-7
  13. evaluation vol.62, pp.8, 2013, https://doi.org/10.1002/pi.4412
  14. Lower critical solution temperature behavior of amphiphilic copolymers based on polyaspartamide derivatives vol.107, pp.1, 2008, https://doi.org/10.1002/app.27138
  15. Synthesis and characterization of novel thermo- and pH-responsive copolymers based on amphiphilic polyaspartamides pp.10974628, 2009, https://doi.org/10.1002/app.29055
  16. Biodegradable stimuli-responsive hydrogels based on amphiphilic polyaspartamides with tertiary amine pendent groups pp.10970126, 2009, https://doi.org/10.1002/pi.2740
  17. Preparation of Biodegradable Thermo-responsive Polyaspartamides with N-Isopropylamine Pendent Groups (I) vol.27, pp.12, 2006, https://doi.org/10.5012/bkcs.2006.27.12.1981
  18. Preparation of Novel Nonlinear Optical Polyester with Enhanced Thermal Stability of Dipole Alignment vol.28, pp.8, 2006, https://doi.org/10.5012/bkcs.2007.28.8.1433
  19. Preparation and Nonlinear Optical Properties of Novel Polyesters with Enhanced Thermal Stability of Second Harmonic Generation vol.29, pp.1, 2006, https://doi.org/10.5012/bkcs.2008.29.1.181
  20. Synthesis and Characterization of Novel Amino Acid-conjugated Poly(aspartic acid) Derivatives vol.29, pp.10, 2006, https://doi.org/10.5012/bkcs.2008.29.10.1887
  21. Preparation of Novel T-type Polyurethanes with High Thermal Stability of Second Harmonic Generation and Their Nonlinear Optical Properties vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.811
  22. Synthesis of Novel Y-type Nonlinear Optical Polyesters with Enhanced Thermal Stability of Dipole Alignment vol.29, pp.5, 2006, https://doi.org/10.5012/bkcs.2008.29.5.933
  23. Synthesis and Properties of Novel Y-type Nonlinear Optical Polyester Containing Cyanovinylthiophene with Enhanced Thermal Stability of Second Harmonic Generation vol.30, pp.3, 2006, https://doi.org/10.5012/bkcs.2009.30.3.661
  24. Synthesis and Nonlinear Optical Properties of Novel Polyester with 2,3-Dioxybenzylidenecyanoacetate vol.30, pp.3, 2006, https://doi.org/10.5012/bkcs.2009.30.3.731
  25. Preparation and Properties of A Novel Y-type Nonlinear Optical Polyester with Dioxybenzylidenecyanoacetate Groups vol.30, pp.5, 2009, https://doi.org/10.5012/bkcs.2009.30.5.1080
  26. Synthesis and Nonlinear Optical Properties of Novel T-type Polyester Containing Thiophene with Enhanced Thermal Stability vol.31, pp.2, 2010, https://doi.org/10.5012/bkcs.2010.31.02.429
  27. Synthesis of Novel Y-type Nonlinear Optical Polyester with Enhanced Thermal Stability of Second Harmonic Generation for Electro-Optic Applications vol.31, pp.6, 2006, https://doi.org/10.5012/bkcs.2010.31.6.1509
  28. Synthesis and Properties of Novel T-type Nonlinear Optical Polyurethane Containing Tricyanovinylthienyl Group with Enhanced Thermal Stability of Dipole Alignment vol.32, pp.2, 2011, https://doi.org/10.5012/bkcs.2011.32.2.424
  29. Preparation of ‘click’ hydrogels from polyaspartamide derivatives vol.62, pp.2, 2006, https://doi.org/10.1002/pi.4295