DOI QR코드

DOI QR Code

Quantum Jump Approach to Stimulated Absorption and Emission

  • Published : 2006.08.20

Abstract

In this paper a new theory is presented to treat the problem of stimulated absorption and emission of photons between energy levels from the standpoint of discrete quantum jumps. In order to implement the theory a scheme to avoid the quantum Zeno effect is proposed. Numerical simulations are performed to demonstrate that this approach does not contradict the principles of the standard wave mechanics. It is shown that with this approach one can obtain photon observation statistics as well.

Keywords

References

  1. Ballentine, L. E. Rev. Mod. Phys. 1970, 42, 358 https://doi.org/10.1103/RevModPhys.42.358
  2. Quantum Mechanics; Prentice-Hall: Englewood Cliffs, 1990
  3. Rempe, G. Physics World 2000, December, 37
  4. Cirac, J. I.; Zoller, P. Physics Today 2004, March, 38
  5. Dehmelt, H. Bull. Am. Phys. Soc. 1975, 20, 60
  6. Nagourney, W.; Sandberg, J.; Dehmelt, H. Phys. Rev. Lett. 1986, 56, 2797 https://doi.org/10.1103/PhysRevLett.56.2797
  7. Sauter, T.; Neuhauser, W.; Blatt, R.; Toschek, P. E. Phys. Rev. Lett. 1986, 57, 1696 https://doi.org/10.1103/PhysRevLett.57.1696
  8. Bergquist, J. C.; Hulet, R. G.; Itano, W. M.; Wineland, D. J. Phys. Rev. Lett. 1986, 57, 1699 https://doi.org/10.1103/PhysRevLett.57.1699
  9. Gisin, N.; Percival, I. C. J. Phys. 1992, A25, 5677
  10. Carmichael, H. J. An Open Systems Approach to Quantum Optics; Springer: Berlin, 1993
  11. Dalibard, J.; Castin, Y.; Molmer, K. Phys. Rev. Lett. 1992, 68, 580 https://doi.org/10.1103/PhysRevLett.68.580
  12. Gardiner, C. W.; Parkins, A. S.; Zoller, P. Phys. Rev. 1992, A46, 4363
  13. Wiseman, H. M.; Milburn, G. J. Phys. Rev. 1993, A47, 1652
  14. Plenio, M. B.; Knight, P. L. Rev. Mod. Phys. 1998, 70, 101 https://doi.org/10.1103/RevModPhys.70.101
  15. Pazy, E.; Calarco, T.; Zoller, P. IEEE Trans. Nanotechnol. 2004, 3, 10 https://doi.org/10.1109/TNANO.2003.820516
  16. Lee, C. J. Phys. Rev. 2000, A61, 063604
  17. Lee, C. J. Bull. Korean Chem. Soc. 2003, 24, 600 https://doi.org/10.1007/s11814-007-0010-1
  18. Walther, H. Cavity QED In Encyclopedia of Modern Optics; Guenther, R. D.; Steel, D. G.; Bayvel, L., Eds.; Elsevier: Oxford, 2005; Vol. 4, p 218
  19. Allen, L.; Eberly, J. H. Optical Resonance and Two-Level Atoms; Dover: New York, 1987
  20. Rabi, I. I. Phys. Rev. 1937, 51, 652 https://doi.org/10.1103/PhysRev.51.652
  21. Greenstein, G.; Zajonc, A. G. The Quantum Challenge; Jones and Bartlett Publishers: Sudburry, 1997
  22. Misra, B.; Sudarshan, E. C. G. J. Math. Phys. 1977, 18, 756 https://doi.org/10.1063/1.523304
  23. Itano, W. M.; Heinzen, D. J.; Bollinger, J. J.; Weinland, D. J. Phys. Rev. 1990, A41, 2295
  24. Hanbury-Brown, R.; Twiss, R. Q. Nature 1956, 177, 27 https://doi.org/10.1038/177027a0

Cited by

  1. Photon absorption and emission statistics of a two-level atom in a cavity vol.60, pp.5, 2012, https://doi.org/10.3938/jkps.60.766
  2. Energetic Disorder Dependence of Optimal Trap Depth in the Space Charge Field Formation for Photorefractivity vol.28, pp.3, 2006, https://doi.org/10.5012/bkcs.2007.28.3.447
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. New Calculation of Charge Generation Efficiency and Photocurrent in Organic Photoconducting Device vol.30, pp.1, 2006, https://doi.org/10.5012/bkcs.2009.30.1.097
  5. Ultimate statistical physics: fluorescence of a single atom vol.2016, pp.10, 2006, https://doi.org/10.1088/1742-5468/2016/10/104002