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In the reaction A + B C, where A and B are ionic reactants having opposite charges, a B molecule 
approaching an A will experience a switching of the interaction potential when the A molecule is captured by 
one of the other B molecules in the medium. In the reversible case, the former B molecule still has a chance to 
react with the A, so that one needs to take into account the switched interaction between the reactant B and the 
product C as well as that between the reactants to treat the kinetics accurately. It is shown that this kind of 
interaction potential switching affects the relaxation kinetics in an intriguing way as observed in a recent 
experiment on an excited-state proton transfer reaction.
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Introduction

Relaxation kinetics methods have been widely used to 
measure the forward and reverse reaction rates of very rapid 
reactions? These methods usually assume that the chemical 
relaxation proceeds exponentially. However, when the 
molecular diffusion is slow compared to the inherent reaction 
rate, the long-time relaxation follows power-law decay?-3 In 
addition, the relaxation kinetics at an intermediate time can 
be quite complicated due to the many-particle effects.

To get a better understanding on the many-particle effects, 
the reversible association-dissociation reaction, A + B C? 
has been studied intensively over the last decade from various 
theoretical perspective,3-22 and also via experiments23-29 and 
computer simulations.이‘印-实 From these efforts, a very 
accurate analytic theory has finally emerged, which is in 
almo마 perfect agreement with computer simulation results 
over the whole time range,21 and an exact analytic result has 
also been obtained for the asymptotic relaxation kinetics? 
However, when there is a strong interaction potential between 
the reactants, an accurate theory applicable over the whole 
time range is still lacking. In this paper, we extend the many
particle kernel (MPK) theory developed in Refs, and to take 
into account the effect of Coulomb interaction potential 
between reactants.

The theory will be developed in the context of the 
reversible excited-state proton transfer reaction, which can 
be represented schematically as AH* A*- + H*. In a 
solution, the proton is coordinated with a solvent molecule, 
which is implicit in the scheme. By lowering the pH value of 
solution, we may have [H+] » [AH*] + [A*-]. The theory 
can be applied to this pseudo-first-order case as well as the 

geminate recombination case. An interesting aspect of this 
reaction system is that 过 ions approaching an A*- will 
experience a switching of the interaction potential when the 
A*— molecule is captured by one of the H+ ions. None of the 
previous theories dealt with this dichotomou이y fluctuating 
potential field effect. Therefore, the present theoretical 
extension would help to understand the subtle relaxation 
kinetic behaviors observed for an excited-state proton transfer 
reaction system.

Theory

We will consider a general reaction scheme, A* + B 
C*, where A* and B molecules have opposite charges of the 
same magnitude. The excited-state molecules A* and C* are 
generated from the ga)und-state molecules A and C by 
external illumination at appropriate wavelengths, and may 
undergo unimolecular decays:

R间— 
，4 二寻츠 /*,

R&')—

后

R的, R&), kA and kc are the associated rate coefficients. We 
will assume that A* as well as C* is immobile. When a 
mobile B molecule comes into contact with an A* at a 
distance a; they form a C* with an intrinsic bimolecular rate 
constant 仔 Then the C* molecule may dissociate back into 
A* and B at a separation cr with rate constant kr. All 
molecules are assumed to be spherical

In the usual experimental situations, the external illumination 
is weak enough that the concentrations of the excited species 
are very small compared to those of ground-state species. 
Then the number densities of ground-state A and C 
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molecules, denoted by Ca and Cc, can be considered to 
remain constant. We denote the time-dependent number 
densities of A* and C* molecules by 시*Q) and while 
the number density of excess B molecules as C효.

The rate equations for a*(z) and c*(z) was given in 
Appendix A of Ref 22. In the Laplace domain [丿《少=

(aef"U)],they can be rewritten as

+ 已(S)G = -[(5 + ^c)^(5)-^c(5)Cc]

=切(冬勇)+ 伫@*(勇)三&(s). (1)

Here, C財％。"，t) is the two-particle reduced distribution 
function (RDF) that represents the product of the average 
number densities of A* and B molecules at the two locations 
separated by r, Its time evolution is governed by the 
following equation,22

-[顼二*爵,s) + kA(s)CACBgAB(r)

+ &(s) - 6 s) + k£c«B(r, s). (2)
4刀b

La^b denotes the Smoluchowski operator governing the 
thermal motion ofB under the interaction potential of A*. Its 
explicit expression is given by

*思+9保+營,

where D is the diffusion constant of B's and U is the 
interaction potential in units of thermal energy The 
second and the third terms on the right hand side of Eq. (2) 
describe the unimolecular decay and generation process of 
A*-B pairs, while the fourth term describes the bimolecular 
process between the pairs. (尹)is the equilibrium pair 
correlation function given by K. The last two terms bring in 
the many-particle effects on the mean-field pair dynamics. If 
we neglect these many-particle competition terms in Eq. (2), 
the problem becomes easily solvable but the applicable 
range of the solution is limited to the very low C효 case.

a; s) denotes the three-particle RDF between A* 
and two B molecules separated by r and o; while s) 
denotes the two-particle RDF between C* and B molecules. 
The evolution equation for。"松(尹,s) is given by22

sCc,B(r, s) = LctB(r)CctB(r,s)

-kcGw。, s) + kc(s)CcCBgCB(r)

+ b,s) + k£c«B(r,s). (3)

Lc^b is the Smoluchowski operator governing the thermal 
motion ofB against the uncharged product molecule C*,

LMMr) = d[£ + 릚S 

and gcs(r)= L The boundary conditions associated with Eqs. 
(2) and (3) are given by lim s) = ^*(s)CBgAB(r), 

r -> go
and lim s) = d*(5)CBgCB(r)? respectively 

r -> go
Equations (2) and (3) involve the three-particle RDF 

whose evolution equation again involves the higher order 
RDF functions in a hierarchical manner The difference 
between La^b and Lg renders the complicated many
particle problem even more difficult to solve. To tackle this 
formidable problem, we choose to employ the simpler 
version of the MPK theory as presented in Ref 22. This 
version of the MPK theory, which we called the MPK2 
theory, is mathematically much simpler, though less accurate, 
than the full MPK theory developed in Ref 2L It was shown 
that, for a reaction between the neutral reactants, the MPK2 
theory gives quite accurate results unless KeqCe is very large 
(Keq is the equilibrium constant of the reaction). And we note 
that the parameters of the experimental system that we are 
concerned with are well in the applicable range of the MPK2 
theory.

We will first present exact relations that can be derived in 
the fi-amework of MPK theory. The rate equation given in 
Eq. (1) can be put into a non-Markovian rate equation:

a(5)= - s) +

=-1勺槌)CM* 槌)+ M(s)@*(s). (4)

where a{s) is the quantity defined in Eq. (1). The rate kernels 
and M(s), associated with the forward association and 

the reverse dissociation reactions respectively, are given by

&(s) &.(s) 1
I---  = ----- = -T---- 1
k? 玲 户(s)

户(s) = 1 + x冷仓/松(財)/負s)， (5)

with A。、*对,s) = Ce(尸，房)一 招对), When the
molecular diffusion occurs very rapidly, the diffusion effect 
function 戶(s) becomes unity, and the rate kernels reduce 
to the equilibrium rate constants, kf and k쩌. The usual 
experimental observable is the probability 1Z이 C) that a C* 
molecule created at Z = 0 will be found as the C* at the time 
t. Its Laplace transform is given as

EG)

=[七+ &®)&|/[財七 + s 由(s)q +七臨 s)], (6) 

where 心 = s + 人指 and sc = s + 炽. It can be seen that L (이 C) 
can be calculated once P(s) has been determined.

To find an expression for 戸(s), we need to solve the 
coupled Eqs. (2) and (3). At this point, we introduce the 
truncation approximation of the MPK2 theory,22

一易时。、冬房)+ kgcfP's)

二-")C*mg) + 松(并撰). (7)

Equation (7) is an higher-order analogue of Eq. (4). The 
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situation considered in Eq. (7) differs from that considered in 
Eq. (4) in that there is a third B molecule at the location 
separated by r from ^4* (or C*) molecule in addition to the B 
molecule that is in contact and undergoing reaction with 
力* molecule. Hence, Eq. (7) implies that the forward and 
reverse reaction rate kernels are little affected by the 
presence of the B molecule at the separation r, With this 
approximation, we can solve Eqs. (2) and (3) to obtain 
△。\松(尹,勇)=a; s) (see Appendix for details 
of derivation). Substituting this relation into Eq. (5), we get

户(s) = 1 + K得e, a, s), (8)

For the sake of clarity, we present detailed derivation 
procedures of Eqs. (9) and (11) in Appendix. Because //i and 
//2 have values between 0 and 1, the series in Eq. (11) 
converges. Especially when either //i or [电 is close to 0, the 
series converges quite rapidly This is the case when the 
reactant density is very low so that c?C효 « L By keeping 
only the first four terms in Eq, (11), we get

GN m s)=山 &而,m s) + /-h&N(r, m s)

<7

where &T is the reaction Green's function that is defined as

m s) = {[Sc + 底(s) - [% + &(s)Cb - Zo - AZ]

- 寫.(s)砍s)G? 广 [Sc + &.(s) _班 —一끄

4 "6
= h _ + 丄+ _上으_) 卅 - 七)

L Is녀_£() s_-Lj J 斯녀一匕。 s_-Lj

(9)

Here, Lo = L(賈% AL = Lm - L乎珏 #i = {> - [fc + 原(s) ])/ 
Q年-X-)-> = 1 -卩、，and s± = s + with

-_ _ . ， . .一1 /2、一
Z± = O(s) ± [MS) - 4기S)] } /2,

j，(s) = kA + kc + 财(s)C% + 底(s),

z(5)= kAkc + kckj(s)CB + k差虹(s).

Now the remaining task is to obtain an explicit expression 
for the reaction Green's function &T. Using the relation, (1 - 

X) = 2L 艾二 we can expand the operator on the right side 
F? = 0

of Eq. (9) to obtain the following Dyson-like series:

" = £[(#+壬스日이"
x f k I #2 )4" To) 

ls+-Z° s_-lJ 417, (10)

This equation can be rewritten as (see Appendix for details 
of derivation)

GT(r, r0, s') = [/+布+ 必•布•必

+ 脱T浦+NWV+ 서"-W (11)
5

where • = AL, and Ki and K are the propagation operators 
defined by

，、 —r0) ，、
where //] G^r, r0, s) = M—一— and /.i2GN(r, r0, s)= 

4林
方—j)
N--------—. We then make the following approximations

4矶
which are basically assuming weak interaction potential: 

门，矽 ® Gv(ri，r> 矽 and G,v(乙门，矽 ® &v(n, r, s). This 
helps us to rewrite Eq. (14) in a much simpler form. When 
r = ro? we have

Se r, s) 스 /Z] 如烦, r, s) + /.i2&N(r, r, s)

+牝片加/顼履乙6 r, s) (15)

From the definitions of the operators, Kf and given in Eqs. 
(12) and (13), we can easily see that (尸，匕 勇)= 쌍” 伝 r, 
5+; //i) and &；v(r, r, s) = GDS(r, r, s_; //2) are the Green's 

function for the Debye-Smoluchowski equation with the 
potential of mean force scaled by顷尹).When U(r)= 
-rc/r, with rc denoting the Onsager distance at which the 
Coulomb energy is equal to the thermal energy, explicit 
expression for &ns(r, r0,5; 1) was derived by Hong and 
Noolandi?4

With the expression for the reaction Green's function &T 
(冬 % s) given by Eq, (15), we can calculate the diffusion
effect function P(s) from Eq. (8), and in turn the rate 
kernels and the survival probability from Eqs. (5) and (6), 
respectively It should be noted that, in the limit of C효 -> 0, 
the present solution recovers the exact result for the isolated- 
pair problem. Although an exact expression for GDS is 

available, the following simpler approximate expression will 
be used:

萨S(b, b, s; rc) 스 야)s(b, 6，rc)

_ exp(rc/ (j) 1
—
侦财D 1 +여必石布

(16)

where the effective contact distance 物 is given by

拓 Z = —(12)

g3 £
〃 =o

"亠
다- 一 Lq

—竺一. 

s_ — Lq —卩璀\L
(13)

I .. r / r —2 drexp[-rc ^r]r

=rc[ 1 - exp(-rc / cr)]-1.
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Figure 1. Dependence of the AYc(t\C) curves on the magnitudes of 
Coulombic interaction.

Results and Discussion

When kA = kc, the number density ofC* decays as KeQ(l 
+ KeqCb)Texp(— kct) at long times. Therefore, AFc(/|C)三 
Yc(t\ Qexp(^c0 - KeqC^Q + KeqCs) is the usual quantity 
reported in experiment to characterize the relaxation behavior 
of the reversible association reactions. In Figure 1, we 
compare the AFc(/|C) curves for systems with different 
magnitudes of Coulombic interaction. The values of parameters 
used in Figure 1 are k扌이AjroD = 1, kr수ID = 1, and 4 兀S>Cb = 
0.1. We see that when there is an attractive Coulombic 
interaction between A* and B, after the initial fast decaying 
phase, there emerges an intermediate phase in which the 
relaxation curve shows a slower decay than the asymptotic r3/2 
power-law decay. The relaxation curve at this intermediate 
time interval cannot be described by either of the exponential 
and the power-law function with a sin이e exponent, but 
follows 厂如 with time-dependent exponent 卽)that is an 
increasing function and converges to at long times. In contrast, 
when there is a repulsive Coulomb interaction between A* 
and B,时 is a decreasing function that converges to . This 
intermediate phase is absent in the relaxation curve for the 
reaction between neutral reactant for which rc = 0. In 
addition, one can see that the amplitude of the asymptotic 尸” 

power-law depends on the value of rc. For the reversible 
association reaction between neutral molecules, the linearized 
enhanced superposition approximation (LESA)-based RDF 
theory is known to give an exact asymptotic solution.3-5 The 
LESA results for the reactions between ionic reactants can 
be obtained simply by replacing *(s) and z(s) in Eq. (9) with 
•俨腮(s) = kA + kc + + kr and ^ESA(s) = k』kc + kc賛Cb +
kAkr, respectively. Therefore, for the case with = kc, the 
asymptotic behavior of Yc(t\C) can be obtained as

匕从 * Keqexp(一""“b)

(1+KegC疔
^(/|C)exp(V)牝

X "I—exp土O)](4 也)"

- 1 + J— —M / D - 
(17)

Figure 2. Dependence of the AYc(t\C) curves on the relative 
magnitude of the unimolecular decay rate constants of A* and C*.

where aM=。紡。m) and //? = KeqCB(l + 酿应订'.Eq. (17) 
indicates that the amplitude of the asymptotic power-law 
decay is a decreasing function of 而c, so that the dependence 
of the power-law amplitude on rc becomes more noticeable 
as KeqCs increases. This reflects the fact that the Coulombic 
interaction plays its role not through the dissociation 
reaction but through the association reaction. For rc = 0, Eq. 
(17) reduces to the exact result known for the reaction 
between neutral reactants.5

Figure 2 shows that the amplitude of the asymptotic 
power-law predicted by the LESA theory is practically the 
same as that predicted by the MPK2 theory for the system 
with Coulombic interaction, when KeqCs is not too large. 
However, when KeqCs » 1, there is a noticeable discrepancy 
between the power-law amplitudes predicted by the two 
theories. The parameters used for Figure 2 has the same 
order of magnitude with those for typical excited-state 
proton transfer reaction in acidified water: 虹숭ID = 1, 
4ttcPCb = 1.26 x 10-2, rc = 6a, kc = lO-3^2//). The value of 
好씨4兀oD is 0.5 in (a) and 4 in (b). Note that even a very 
small difference in the lifetimes of A* and C* prevents the 
AFc(/|C) curve from reaching the asymptotic C3/2 power-law 
relaxation phase ultimately, which is one of the characteristics 
of the reversible association reactions in the absence of the 
reactant decay. For the time region where t > O(\kA - kc\~l) 
the time-dependence of is mostly determined by the different 
rate of uni-molecular decaying processes of A* and C*. 
Therefore, one should not neglect just mentioned effects in 
analyzing the experimental data obtained after t=\kA~ kc\~l.

Figure 2(a) also shows that, for a small value of 明 the 
AFc(/|C) curve first goes above the asymptotic power-law 
line at short times, then it goes below the line due to the 
presence of the reaction-driven fluctuation of interaction 
potential and approaches the asymptotic power-law line 
from below. However, for a large value of 籍 it is possible 
that such cross between the APc(/|C) curve and the 
asymptotic power-law line does not occur. In any case, the 
AFc(/|C) curve cannot goes above the power-law line at 
asymptotic region when the lifetimes of A* and C* are 



Reversible Excited-State Proton Transfer Bull. Korean Chem. Soc. 2006, Vol. 27, No. 2 201

identical
In summary, we have presented a theory dealing with the 

effects of reaction-driven fluctuation of interaction potential 
on the diffusion-influenced kinetics of reversible reactions. 
We have found that the relaxation curve displays an 
interesting non-monotonous power-law relaxation behavior 
in the intermediate time region that follows 厂知)with the 
time-dependent exponent 佚旗 before r3/2 asymptotic power
law relaxation phase is reached. The value of 旳 is less than 
3/2 for the system with attractive Coulomb potential, while it 
is larger than 3/2 for the system with repulsive Coulomb 
potential, but in either case it converges to 3/2. We expect 
that the present theory would help to disclose the effects of 
various reaction parameters on the Alc(z|C) curve that may 
be observed in experiments.
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Appendix

Here we present the d버ails of derivation of E옄s. (9) and (11). 
Invoking the truncation approximation, E옄. (7), of the MPK2 theory, 
one can rewite E옄s. (2) and (3) as

sAA^B(r,s) = s) + a(s)
4双广

s) + (时芦殍(Z，s)
+危・(时举(时曲(尹)—(Al) 

and

s) 드 Zc^(r)Adc^(r, s)
+ s)-ir(s)A^c*B(r, s),

+ ¥($)C诲 *(时【£"(〃—(A2) 

respectively. Throughout this work we assume that interaction potential 
between A and B is so weak that the last ternis on the right side of E옄s. 
(Al) and (A2) are negligible. From Eq. (A2), we get the following 
relation between and

Adw(r,s) 드 髯(时CJqc + M(时一乙)(尹)賛殍(尹，时 (A3)

Substituting E옄. (A3) into E옄. (Al)? we get

时 드 ([sc + k(s) - L()][sa + if(s) Cb-L()-AL]
-诳 s)為(sQ}-"sc +总(s)-班西*. (A4)

4次广

In E옄s. (A3) and (A4)? Lo and AL are given by Zo = Zc*毎 A£ = Lm 一 
Lc*b. If we define &T(r, r0, s) as

GT(r, r0, s) 드 ([sc + lr(^) -^o] [^-i + if(s)CB-L() - AZ]
— 危•(时奴时CL - [5c + lr(^)-^o]—一끠.

4^'o
(A5)

Eq (A4) reads as

ACA*B(r, s) = a(s)GT(r, a, s). (A6)

Substituting E옄. (A6) into the exact 成卩竝ion, E옄.(5),"22 we get e옄. 

(9).
Equation (10) can be obtained straightforwardly from E옄. (9). Let 

us defineXand Yd&X= 一L()) and Y = f成S_ -where we 
use the same notations as in Eq. (10). In ternis ofX and l^Eq. (10) can 
be written as

E 小，s) = [(X+ P) + (X+ P) • (X+ Y)

+ (X+ Y) • (X+ Y) • (X+ Y) + …]而—；) (A7)
5

where • represents AL. The operator in the bracket in the R.H.S. of 
E옄. (A7) can be rewitten as follows: 

[(X+ Y) + (X+ Y) • (X+ Y) + (X+ Y) • (X+ Y) • (X+ P) + …] 
=(x+x・x+x・x・x+ …*)+(y+y・ y+ y* y* y+ …) 
+(x+x・x+x・x・x+—)・(y+y・y+y・y・y+—) 
+(y+y・y+y・y・y+—)・(x+x・x+x・x・x+—) 
+(x+x・x+x・x・x+—)・(y+y・y+y・y・y+—) 
•(x+x・x+x・x・x+…)+(mm+…) 
•(x+x・x+x・x・x+…)・(mm+…)+… 

(A8)

Noting that

(X+X・X+X・X・X+…)

=勇(丄厂宜)亠厂乙卢“\产痍 
/? = 0 堀+ —乙)ST)

(mm+…)

=Z ( #2 亶)#2 = ----- u M 三& (A9)
n = Lq 丿Sl Lq 孔一氐厂卩gXL

one can identify E옄. (A8) with E옄. (11).

References

1. Eigen, M.; Kruse, W.; Maass, G; de Maeyer, L. Prog, React, 
Kinet. 1964,2,287.

2. Bemasconi, C. F. Relaxation Kinetics; Acad여nic: New York, 
1976.

3. Sung, J.; Shin, K. J.; Lee, S. J. Chem. Phys. 1997, 107. 9418; 
1998,109,9101.

4. Naumann, W.; Shokhirev, N. V.; Szabo, A. Phys, Rev, Lett, 1997, 
79,3074.

5. Gopich, I. V.; Agmon, N. Phys, Rev. Lett. 2000,84,2730; Agmon, 
N.; Gopich, I. V. J. Chem, Phys. 2000,112,2863.

6. ZePdovich, Y B.; Ovchinnikov, A. A. JETPLett, 1977,26,440.
7. Lee, S.; Karplus, M. J, Chem, Phys, 1987,86, 1883; Erratum, ibid, 

1992,96, 1663.
8. Agmon, N.; Szabo, A. J, Chem, Phys, 1990, 92, 5270.
9. Szabo, A.; Zwanzig, R. J. Stat. Phys, 1991, 1057.

10. Szabo, A. J. Chem, Phys, 1991, P5? 2481.
11. Burlatsky, S. F.; Oshanin, G S.; Ovchinnikov, A. A. Chem. Phys. 

1991,152, 13.
12. Agmon, N.; Schnorer, H.; Blumen, A. J. Phys. Chem. 1991, 95, 

7326.
13. Martinho, J. M. G.; Farinha, J. P.; Berberan-Santos, M. N.; 

Duhamel, J.; Winnik, M. A. J. Chem, Phys, 1992, 96, 8143.
14. A잉mm, N. Phys. Rev. E1993, 47.2415.'
15. Naumann, W.; Molski, A. J. Chem, Phys, 1994,100, 1511.
16. Moi이瓦 A.; Naumann, W. J. Chem, Phys, 1994,100, 1520.
17. Naumann, W. J. Chem. Phys. 1994,161. 10953.
18. Gopich, I. V.; Doktorov, A. B. J, Chem, Phys, 1996,105,2320.
19. Yang, M.; Lee, S.; Shin, K. J. Phys, Rev. Lett. 1997, 79, 3783.
20. Yang, M.; Lee, S.; Shin, K. J. J, Chem. Phys. 1998,108, 9069.
21. Sung, J.; Lee, S. J. Chem, Phys, 1999, 111, 796.
22. Sung, J.; Lee, S. I Chem, Phys, 1999, 111, 10159; 2000, 112, 

2128.
23. Pines, E.; Huppert, D. J, Chem, Phys, 1986, 84, 3576.
24. Pines, E.; Huppert, D.; Agmon, N. J. Chem,戶”‘&1988,88, 5620.
25. Agmon, N.; Pines, E.; Huppert, D. J, Chem, Phys. 1988,88,5631.
26. Agmon, N.; Huppert, D.; Masad, A.; Pines, E. J. Phys. Chem.

1991, 95, 10407; 1992,96.2020.



202 Bull. Korean Chem. Soc. 2006, Vol. 27, No. 2

27. Huppert, D.; Goldberg, S. Y.; Masad, A.; Agmon, N. Phys. Rev. 
Lett 1992, 6& 3932.

28. Solntsev, K. M.; Agmon, N. Chem, Phys, Lett, 2000,262, 320.
29. Solntsev, K. M.; Huppert, D.; Agmon, N. J. Phys, Chem, A 2001, 

105,5868.
30. Edelstein, A. L.; Agmon, N. J, Chem, Phys, 1993,99,5396.
31. Agm皿 N.; Edelstein, A. L. J, Chem, Phys, 1994,100^ 4181.

JinukLee et al.

32. Ede就前、A. L.; Agmon, N. J. Mol. Liq. 1995, 64, 241; J. Phys.
Chem, 1995,99,5389. '

33. Kim, H.; Yang, M.; Shin, K. J. J. Chem, Phys, 1999, 111, 
1068.

34. Hong, K. M.; Noolandi, J. J. Chem, Phys, 1978, 68, 5163, 5172;
Rice, S. A.; Butler, P. R.; Pilling, M. J.; Baird, J. K. J, Chem, Phys, 
1979, 70.4001. '


