References
- Intermann, A.; Koerner, H.; Koch, F. J. Electrochem. Soc. 1993, 140, 3215 https://doi.org/10.1149/1.2221013
- Yun, J.-Y.; Rhee, S.-W. Korean J. of Chem. Eng. 1996, 13, 510 https://doi.org/10.1007/BF02706002
- Kim, D. H.; Kim, J. J.; Park, J. W.; Kim, J. J. J. Electrochem. Soc. 1996, 143, L188 https://doi.org/10.1149/1.1837081
- Kim, J. Y.; Seo, S.; Kim, D. Y.; Jeon, H.; Kim, Y. J. Vac. Sci. Technol. 2004, 22, 8 https://doi.org/10.1116/1.1624285
- Elam, J. W.; Schuisky, M.; Ferguson, J. D.; George, S. M. Thin Solid Films 2003, 436, 145 https://doi.org/10.1016/S0040-6090(03)00533-9
- Cross, J. B.; Smith, S. M.; Schlegel, H. B. Chem. Mater. 2001, 13, 1095 https://doi.org/10.1021/cm000840c
- Paranjpe, A.; Islamraja, M. J. Vac. Sci. Technol. 1995, B13, 2105
- Shin, H.-K.; Shin, H.-J.; Lee, J. G.; Gang, S. W. J. Chem. Mater. 1997, 9, 76 https://doi.org/10.1021/cm960171w
- Yun, J.-Y.; Park, M.-Y.; Rhee, S.-W. J. Electrochem. Soc. 1998, 145, 2453 https://doi.org/10.1149/1.1838658
- Dubios, L. H.; Zegarski, B. R. J. Electrochem. Soc. 1992, 139, 3603 https://doi.org/10.1149/1.2087327
- Weiller, B. H. J. Am. Chem. Soc. 1996, 118, 4975 https://doi.org/10.1021/ja953468o
- Vab der Vis, M. G. M.; Konings, R. J. M.; Oskam, A.; Walter, R. J. Mol. Struct. 1994, 93, 323
- Driessen, J. P. A. M.; Schoonman, J.; Jensen, K. F. J. Electrochem. Soc. 2001, 148, G178 https://doi.org/10.1149/1.1350687
- Yun, J.-Y.; Park, M.-Y.; Rhee, S.-W. J. Electrochem. Soc. 1999, 146, 1804 https://doi.org/10.1149/1.1391847
- Yun, J.-H.; Park, M.-Y.; Rhee, S.-W. J. Vac. Sci. Technol. 1998, A16, 419
- Fogler, H. S. Element of Chemical Reaction Engineering; 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, 1992; p 11
- Kim, I. W.; Kim, S.-J.; Kim, D. H.; Woo, H.; Park, M.-Y.; Rhee, S.-W. Korean J. Chem. Eng. 2004, 21, 1256 https://doi.org/10.1007/BF02719504
- Liu, X.; Wu, Z.; Cai, H.; Yang, Y.; Chen, T.; Vallet, C. E.; Zuhr, R. A.; Beach, D. B.; Peng, Z.-H.; Wu, Y.-D.; Concolino, T. E.; Rheingold, A. L.; Xue, Z. J. Am. Chem. Soc. 2001, 123, 8011 https://doi.org/10.1021/ja010744s
- Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectroscopic Identification of Organic Compounds, 5th ed.; John Wiley & Sons, Inc.: New York, 1991; p 126
Cited by
- Quantum Cascade Laser-Based Measurement of Metal Alkylamide Density during Atomic Layer Deposition vol.66, pp.3, 2012, https://doi.org/10.1366/11-06473
- Thin-Film Growth in the Atomic Layer Deposition Process by Multiscale Simulations vol.120, pp.49, 2016, https://doi.org/10.1021/acs.jpcc.6b06347
- Growth Using Remote Plasma-Enhanced Atomic Layer Deposition vol.121, pp.8, 2017, https://doi.org/10.1021/acs.jpcc.7b00211
- Real-Time Diagnosis of Nano-Sized Contaminant Particles Generated in TiN Metal Organic Chemical Vapor Deposition vol.2, pp.1882-0786, 2009, https://doi.org/10.1143/APEX.2.035501
- Time-resolved Fourier transform infrared spectroscopy of the gas phase during atomic layer deposition vol.28, pp.4, 2006, https://doi.org/10.1116/1.3455187
- Towards a comprehensive understanding of the chemical vapor deposition of titanium nitride using Ti(NMe2)4: a density functional theory approach vol.43, pp.23, 2014, https://doi.org/10.1039/c4dt00690a
- Laser processing of Ti6Al4V alloy: wetting state of surface and environmental dust effects vol.5, pp.2, 2006, https://doi.org/10.1016/j.heliyon.2019.e01211
- Consistency and reproducibility in atomic layer deposition vol.38, pp.2, 2006, https://doi.org/10.1116/1.5140603
- Nondispersive Infrared Gas Analyzer for Partial Pressure Measurements of a Tantalum Alkylamide During Vapor Deposition Processes vol.74, pp.10, 2006, https://doi.org/10.1177/0003702819885182
- Transparent high conductive Titanium oxynitride nanofilms obtained by nucleation control for sustainable optolectronics vol.574, pp.None, 2006, https://doi.org/10.1016/j.apsusc.2021.151631