DOI QR코드

DOI QR Code

Thermal Decomposition of Tetrakis(ethylmethylamido) Titanium for Chemical Vapor Deposition of Titanium Nitride

  • Kim, Seong-Jae (Faculty of Applied Chemical Engineering and Research Institute for Catalysis, Chonnam National University) ;
  • Kim, Bo-Hye (Department of Korean Medicinal Supply, Dongshin University) ;
  • Woo, Hee-Gweon (Department of Chemistry and Nanotechnology Research Center, Chonnam National University) ;
  • Kim, Su-Kyung (Faculty of Applied Chemical Engineering and Research Institute for Catalysis, Chonnam National University) ;
  • Kim, Do-Heyoung (Faculty of Applied Chemical Engineering and Research Institute for Catalysis, Chonnam National University)
  • Published : 2006.02.20

Abstract

The thermal decomposition of tetrakis(ethylmethylamido) titanium (TEMAT) has been investigated in Ar and $H_2$ gas atmospheres at gas temperatures of 100-400 ${^{\circ}C}$ by using Fourier Transform infrared spectroscopy (FTIR) as a fundamental study for the chemical vapor deposition (CVD) of titanium nitride (TiN) thin film. The activation energy for the decomposition of TEMAT was estimated to be 10.92 kcal/mol and the reaction order was determined to be the first order. The decomposition behavior of TEMAT was affected by ambient gases. TEMAT was decomposed into the intermediate forms of imine (C=N) compounds in Ar and $H_2$ atmosphere, but additional nitrile (RC$\equiv$N) compound was observed only in $H_2$ atmosphere. The decomposition rate of TEMAT under $H_2$ atmosphere was slower than that in Ar atmosphere, which resulted in the extension of the regime of the surface reaction control in the CVD TiN process.

Keywords

References

  1. Intermann, A.; Koerner, H.; Koch, F. J. Electrochem. Soc. 1993, 140, 3215 https://doi.org/10.1149/1.2221013
  2. Yun, J.-Y.; Rhee, S.-W. Korean J. of Chem. Eng. 1996, 13, 510 https://doi.org/10.1007/BF02706002
  3. Kim, D. H.; Kim, J. J.; Park, J. W.; Kim, J. J. J. Electrochem. Soc. 1996, 143, L188 https://doi.org/10.1149/1.1837081
  4. Kim, J. Y.; Seo, S.; Kim, D. Y.; Jeon, H.; Kim, Y. J. Vac. Sci. Technol. 2004, 22, 8 https://doi.org/10.1116/1.1624285
  5. Elam, J. W.; Schuisky, M.; Ferguson, J. D.; George, S. M. Thin Solid Films 2003, 436, 145 https://doi.org/10.1016/S0040-6090(03)00533-9
  6. Cross, J. B.; Smith, S. M.; Schlegel, H. B. Chem. Mater. 2001, 13, 1095 https://doi.org/10.1021/cm000840c
  7. Paranjpe, A.; Islamraja, M. J. Vac. Sci. Technol. 1995, B13, 2105
  8. Shin, H.-K.; Shin, H.-J.; Lee, J. G.; Gang, S. W. J. Chem. Mater. 1997, 9, 76 https://doi.org/10.1021/cm960171w
  9. Yun, J.-Y.; Park, M.-Y.; Rhee, S.-W. J. Electrochem. Soc. 1998, 145, 2453 https://doi.org/10.1149/1.1838658
  10. Dubios, L. H.; Zegarski, B. R. J. Electrochem. Soc. 1992, 139, 3603 https://doi.org/10.1149/1.2087327
  11. Weiller, B. H. J. Am. Chem. Soc. 1996, 118, 4975 https://doi.org/10.1021/ja953468o
  12. Vab der Vis, M. G. M.; Konings, R. J. M.; Oskam, A.; Walter, R. J. Mol. Struct. 1994, 93, 323
  13. Driessen, J. P. A. M.; Schoonman, J.; Jensen, K. F. J. Electrochem. Soc. 2001, 148, G178 https://doi.org/10.1149/1.1350687
  14. Yun, J.-Y.; Park, M.-Y.; Rhee, S.-W. J. Electrochem. Soc. 1999, 146, 1804 https://doi.org/10.1149/1.1391847
  15. Yun, J.-H.; Park, M.-Y.; Rhee, S.-W. J. Vac. Sci. Technol. 1998, A16, 419
  16. Fogler, H. S. Element of Chemical Reaction Engineering; 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, 1992; p 11
  17. Kim, I. W.; Kim, S.-J.; Kim, D. H.; Woo, H.; Park, M.-Y.; Rhee, S.-W. Korean J. Chem. Eng. 2004, 21, 1256 https://doi.org/10.1007/BF02719504
  18. Liu, X.; Wu, Z.; Cai, H.; Yang, Y.; Chen, T.; Vallet, C. E.; Zuhr, R. A.; Beach, D. B.; Peng, Z.-H.; Wu, Y.-D.; Concolino, T. E.; Rheingold, A. L.; Xue, Z. J. Am. Chem. Soc. 2001, 123, 8011 https://doi.org/10.1021/ja010744s
  19. Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectroscopic Identification of Organic Compounds, 5th ed.; John Wiley & Sons, Inc.: New York, 1991; p 126

Cited by

  1. Quantum Cascade Laser-Based Measurement of Metal Alkylamide Density during Atomic Layer Deposition vol.66, pp.3, 2012, https://doi.org/10.1366/11-06473
  2. Thin-Film Growth in the Atomic Layer Deposition Process by Multiscale Simulations vol.120, pp.49, 2016, https://doi.org/10.1021/acs.jpcc.6b06347
  3. Growth Using Remote Plasma-Enhanced Atomic Layer Deposition vol.121, pp.8, 2017, https://doi.org/10.1021/acs.jpcc.7b00211
  4. Real-Time Diagnosis of Nano-Sized Contaminant Particles Generated in TiN Metal Organic Chemical Vapor Deposition vol.2, pp.1882-0786, 2009, https://doi.org/10.1143/APEX.2.035501
  5. Time-resolved Fourier transform infrared spectroscopy of the gas phase during atomic layer deposition vol.28, pp.4, 2006, https://doi.org/10.1116/1.3455187
  6. Towards a comprehensive understanding of the chemical vapor deposition of titanium nitride using Ti(NMe2)4: a density functional theory approach vol.43, pp.23, 2014, https://doi.org/10.1039/c4dt00690a
  7. Laser processing of Ti6Al4V alloy: wetting state of surface and environmental dust effects vol.5, pp.2, 2006, https://doi.org/10.1016/j.heliyon.2019.e01211
  8. Consistency and reproducibility in atomic layer deposition vol.38, pp.2, 2006, https://doi.org/10.1116/1.5140603
  9. Nondispersive Infrared Gas Analyzer for Partial Pressure Measurements of a Tantalum Alkylamide During Vapor Deposition Processes vol.74, pp.10, 2006, https://doi.org/10.1177/0003702819885182
  10. Transparent high conductive Titanium oxynitride nanofilms obtained by nucleation control for sustainable optolectronics vol.574, pp.None, 2006, https://doi.org/10.1016/j.apsusc.2021.151631