DOI QR코드

DOI QR Code

Resolution of β-Amino Acids on a Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxilic Acid without Extra Free Aminopropyl Groups on Silica Surface

  • Hyun, Myung- Ho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National UniversityDepartment of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Choi, Hee-Jung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kang, Bu-Sung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Tan, Guang-Hui (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Cho, Yoon-Jae (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2006.11.20

Abstract

A liquid chromatographic chiral stationary phase (CSP) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxilic acid without extra free aminopropyl groups on silica surface has been demonstrated to be quite effective for the resolution of various $\beta$-amino acids. The retention factors ($k_1$) for the resolution of $\beta$-amino acids on the CSP were quite large and the large retention factors might be quite attractive along with the reasonable separation factors ($\alpha$) for preparative scale enantioselective chromatography. The large retention factors on the CSP were found to be reduced effectively by adding ammonium ion to mobile phase without sacrificing the chiral recognition efficiency of the CSP. Consequently, the CSP is also quite applicable for use in analytical enantioselective chromatography.

Keywords

References

  1. Chiral Separation Techniques: A Practical Approach; Subramanian, G., Ed.; Wiley-VCH: Weinheim, 2001
  2. Aboul- Enein, H. Y.; Ali, I. Chiral Separations by Liquid Chromatography and Related Technologies; Marcel Dekker: New York, 2003
  3. Hyun, M. H. J. Sep. Sci. 2003, 26, 242 https://doi.org/10.1002/jssc.200390030
  4. Hyun, M. H. Bull. Kor. Chem. Soc. 2005, 26, 1153 https://doi.org/10.5012/bkcs.2005.26.8.1153
  5. Hyun, M. H. J. Sep. Sci. 2006, 29, 750 https://doi.org/10.1002/jssc.200500431
  6. Shinbo, T.; Yamaguchi, T.; Nishimura, K.; Sugiura, M. J. Chromatogr. 1987, 405, 145 https://doi.org/10.1016/S0021-9673(01)81756-8
  7. Shinbo, T.; Yamaguchi, T.; Yanagishita, H.; Kitamoto, D.; Sakaki, K.; Sugiura, M. J. Chromatogr. 1992, 625, 101 https://doi.org/10.1016/0021-9673(92)85191-U
  8. Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J. J. Chromatogr. A 2001, 910, 359 https://doi.org/10.1016/S0021-9673(00)01230-9
  9. Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J. J. Chromatogr. A 2002, 959, 7
  10. Hyun, M. H.; Han, S. C. J. Biochem. Biophys. Methods 2002, 54, 235 https://doi.org/10.1016/S0165-022X(02)00117-3
  11. Hyun, M. H.; Min, H. J.; Cho, Y. J. J. Chromatogr. A 2003, 996, 233 https://doi.org/10.1016/S0021-9673(03)00540-5
  12. Hyun, M. H.; Tan, G.; Cho, Y. J. Biomed. Chromatogr. 2005, 19, 208 https://doi.org/10.1002/bmc.437
  13. Hyun, M. H.; Jin, J. S.; Lee, W. J. Chromatogr. A 1998, 822, 155 https://doi.org/10.1016/S0021-9673(98)00606-2
  14. Hyun, M. H.; Cho, Y. J.; Jin, J. S. J. Sep. Sci. 2002, 25, 648 https://doi.org/10.1002/1615-9314(20020701)25:10/11<648::AID-JSSC648>3.0.CO;2-D
  15. Hyun, M. H.; Cho, Y. J.; Kim, J. A.; Jin, J. S. J. Liq. Chromatogr. Rel. Technol. 2003, 26, 1083 https://doi.org/10.1081/JLC-120020095
  16. Berkecz, R.; Sztojkov-Ivanov, A.; Ilisz, I.; Forro, E.; Fulop, F.; Hyun, M. H.; Peter, A. J. Chromatogr. A 2006, 1125, 138 https://doi.org/10.1016/j.chroma.2006.06.064
  17. Hyun, M. H.; Min, H. J.; Cho, Y. J. Bull. Kor. Chem. Soc. 2003, 24, 911 https://doi.org/10.5012/bkcs.2003.24.7.911
  18. Hyun, M. H.; Jin, J. S.; Koo, H. J.; Lee, W. J. Chromatogr. A 1999, 837, 75 https://doi.org/10.1016/S0021-9673(99)00100-4
  19. Hyun, M. H.; Jin, J. S.; Lee, W. Bull. Kor. Chem. Soc. 1998, 19, 819
  20. Hyun, M. H.; Han, S. C.; Jin, J. S.; Lee, W. Chromatographia 2000, 52, 473 https://doi.org/10.1007/BF02535722
  21. Hyun, M. H.; Han, S. C.; Cho, Y. J.; Jin, J. S.; Lee, W. Biomed. Chromatogr. 2002, 16, 356 https://doi.org/10.1002/bmc.164
  22. Hyun, M. H.; Kim, Y. H.; Cho, Y. J. Bull. Kor. Chem. Soc. 2004, 25, 400 https://doi.org/10.5012/bkcs.2004.25.3.400
  23. Hyun, M. H.; Cho, Y. J. J. Sep. Sci. 2005, 28, 31 https://doi.org/10.1002/jssc.200401919
  24. Wasserman, H. H.; Matsuyama, H.; Robinson, R. P. Tetrahedron 2002, 58, 7177 https://doi.org/10.1016/S0040-4020(02)00731-7
  25. Juaristi, E.; Soloshonok, V. A. Enantioselective Synthesis of $\beta$-Amino Acids, 2nd ed.; Wiley- VCH: New York, 2005
  26. Pirkle, W. H.; Koscho, M. E. J. Chromatogr. A 1999, 840, 151 https://doi.org/10.1016/S0021-9673(99)00222-8

Cited by

  1. High-performance liquid chromatographic enantioseparation of isoxazoline-fused 2-aminocyclopentanecarboxylic acids on a chiral ligand-exchange stationary phase vol.36, pp.8, 2013, https://doi.org/10.1002/jssc.201201061
  2. Application of crown ethers as stationary phase in the chromatographic methods vol.75, pp.1-2, 2013, https://doi.org/10.1007/s10847-012-0158-0
  3. Comparison of the Separation Performances of Cinchona Alkaloid-Based Zwitterionic Stationary Phases in the Enantioseparation of β2- and β3-Amino Acids vol.20, pp.1, 2014, https://doi.org/10.3390/molecules20010070
  4. LC Enantioseparation of β-Amino Acids on a Crown Ether-Based Stationary Phase vol.68, pp.S1, 2008, https://doi.org/10.1365/s10337-007-0498-x
  5. -homoamino acids vol.31, pp.21, 2008, https://doi.org/10.1002/jssc.200800388
  6. -homoamino acids using crown ether-based chiral stationary phase vol.32, pp.7, 2009, https://doi.org/10.1002/jssc.200800561
  7. The role of π-acidic and π-basic chiral stationary phases in the high-performance liquid chromatographic enantioseparation of unusual β-amino acids vol.21, pp.3, 2009, https://doi.org/10.1002/chir.20542
  8. -homoamino acids vol.21, pp.9, 2009, https://doi.org/10.1002/chir.20670
  9. Liquid Chromatographic Resolution of N-(3,5-Dinitrobenzoyl)-α-amino Acids on a New Chiral Stationary Phase: the First Liquid Chromatographic Utilization of a Double-Ureide Pocket for the Recogn vol.28, pp.11, 2006, https://doi.org/10.5012/bkcs.2007.28.11.1980
  10. Synthesis of New Chiral Crown Ethers Incorporating Two Different Chiral Units and 'Matched/Mismatched' Effect of the Two Chiral Units on the Chiral Recognition vol.28, pp.12, 2006, https://doi.org/10.5012/bkcs.2007.28.12.2531
  11. An NMR Chiral Solvating Agent for the Chiral Recognition of the Two Enantiomers of N-(3,5-Dinitrobenzoyl)-α-amino Acids vol.28, pp.8, 2007, https://doi.org/10.5012/bkcs.2007.28.8.1419
  12. Preparation of a new chiral acridino-18-crown-6 ether-based stationary phase for enantioseparation of racemic protonated primary aralkyl amines vol.64, pp.6, 2006, https://doi.org/10.1016/j.tet.2007.09.056
  13. Liquid chromatographic resolution of β-amino acids on CSPs based on optically active (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 vol.619, pp.1, 2008, https://doi.org/10.1016/j.aca.2008.03.052
  14. High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases vol.1217, pp.44, 2006, https://doi.org/10.1016/j.chroma.2010.08.079