DOI QR코드

DOI QR Code

Ionic Liquids: An Environmentally Friendly Media for Nucleophilic Substitution Reactions

  • Jorapur, Yogesh R. (Department of Chemistry, Inha University) ;
  • Chi, Dae-Yoon (Department of Chemistry, Inha University)
  • Published : 2006.03.20

Abstract

Ionic liquids are alternative reaction media of increasing interest and are regarded as an eco-friendly alternatives, of potential use in place of the volatile organic solvents typically used in current chemical processing methods. They are emerging as the smart and excellent solvents, which are made of positive and negative ions that they are liquids near room temperature. The nucleophilic substitution reaction is one of the important method for inserting functional groups into a carbon skeleton. Many nucleophilic substitution reactions have been found with enhanced reactivity and selectivity in ionic liquid. In this review, some recent interesting results of nucleophilic substitution reactions such as hydroxylations, ether cleavages, carbon-X (X= carbon, oxygen, nitrogen, fluorine) bond forming reactions, and ring opening of epoxides in ionic liquids are discussed.

Keywords

References

  1. Hartshorn, S. R. Aliphatic Nucleophilic ubstitution;Cambridge University Press:Cambridge, 1973
  2. Katritzky, A. R.; Brycki, B. E. Chem. Soc. Rev. 1990, 19, 83-105 https://doi.org/10.1039/cs9901900083
  3. Cowdrey, W. A.; Hughes, E. D.; Ingold, C. K.; Masterman, S.; Scott, A. D. J. Chem. Soc. 1937, 1252-1271 https://doi.org/10.1039/jr9370001252
  4. Lewis, G. N. Valence and the Structure of Atoms and Molecules; Chemical Catalog Company: NY, 1993; p 113
  5. Olsen, A. R. J. Chem. Phys. 1933, 1, 418-423 https://doi.org/10.1063/1.1749311
  6. Walden, P. Ber. 1893, 26, 210 https://doi.org/10.1002/cber.18930260146
  7. Walden, P. Ber. 1896, 29, 133 https://doi.org/10.1002/cber.18960290127
  8. Walden, P. Ber. 1899, 32, 1855 https://doi.org/10.1002/cber.18990320277
  9. Yost, M. G.; Rose, M. A.; Morgan, M. S. Appl. Occup. Environ. Hyg. 2003, 18, 160-169 https://doi.org/10.1080/10473220301353
  10. Welles, W. L.; Wilburn, R. E.; Ehrlich, J. K.; Floridia, C. M. J. Hazard Mater. 2004, 115, 39- 49 https://doi.org/10.1016/j.jhazmat.2004.05.009
  11. Tsai, J.-H.; Hsu, Y.-C.; Yang, J.-Y. Sci. Total Environ. 2004, 328, 131-142 https://doi.org/10.1016/j.scitotenv.2004.01.020
  12. Agostini, E.; Chini, M.; Ciucci, I.; Corezzi, M.; Mazzini, M. Adv. Air Pollut. 2004, 14, 647-656
  13. Sheldon, R. Chem. Commun. 2001, 2399-2407
  14. Zhao, H.; Malhotra, S. V. Aldrichimica Acta 2002, 35, 75-83
  15. Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. Engl. 2000, 39, 3772-3789 https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  16. Welton, T. Chem. Rev. 1999, 99, 2071-2083 https://doi.org/10.1021/cr980032t
  17. Jain, N.; Kumar, A.;Chauhan, S.; Chauhan, S. M. S. Tetrahedron 2005, 61, 1015-1060 https://doi.org/10.1016/j.tet.2004.10.070
  18. Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A.-C.; Plaquevent, J.-C. Tetrahedron: Asymmetry 2003, 14, 3081-3093 https://doi.org/10.1016/S0957-4166(03)00596-2
  19. Dupont, J.; deSouza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667-3692 https://doi.org/10.1021/cr010338r
  20. Liu, J.-F.; Jonsson, J. A.; Jiang, G.-B. Trends Anal. Chem. 2005, 24, 20-27 https://doi.org/10.1016/j.trac.2004.09.005
  21. Gordon, C. M. Appl. Catal. A Gen. 2001, 222, 101-117 https://doi.org/10.1016/S0926-860X(01)00834-1
  22. Holbrey, J. D.; Seddon, K. R. Clean Products Process 1999, 1, 223-226
  23. Wilkes, J. S. Green Chem. 2002, 4, 73-80 https://doi.org/10.1039/b110838g
  24. Jorapur, Y. R. Synlett 2004, 746-747
  25. Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792-793 https://doi.org/10.1126/science.1090313
  26. Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Inorg. Chem. 1996, 35, 1168-1178 https://doi.org/10.1021/ic951325x
  27. Hussey, C.L. Pure Appl. Chem. 1988, 60, 1763-1772 https://doi.org/10.1351/pac198860121763
  28. Seddon, K. R. In Molten Salt Chemistry; Mamantov, G.; Marassi, R., Eds.; Reidel Publishing Co.: Dordrecht, The Netherlands, 1987; p 365
  29. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem. 1982, 21, 1263-1264 https://doi.org/10.1021/ic00133a078
  30. Hussey, C. L. In Advances in Molten Salts Chemistry; Mamantov, G.; Mamantov, C., Eds.; Elsevier: New York, 1983; Vol. 5, pp 185-230
  31. Dieter, K. M.; Dymek, C. J.; Heimer, N. E.; Rovang, J. W.; Wilkes, J. S. J. Am. Chem. Soc. 1988, 110, 2722-2726 https://doi.org/10.1021/ja00217a004
  32. Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. Thermochim. Acta 2000, 357-358, 97-102 https://doi.org/10.1016/S0040-6031(00)00373-7
  33. Freemantle, M. Chem. Eng. News 1998, 76, 32-37
  34. Hagiwara, R.; Ito, Y. J. Fluorine Chem. 2000, 105, 221-227 https://doi.org/10.1016/S0022-1139(99)00267-5
  35. Song, C. E.; Yoon, M. Y.; Choi, D. S. Bull. Korean Chem. Soc. 2005, 26, 1321-1330 https://doi.org/10.5012/bkcs.2005.26.9.1321
  36. Song, C. E. Ann. Rep. Prog. Chem., Sect. C 2005, 101, 143-173 https://doi.org/10.1039/b408828j
  37. Song, C. E. In Methodologies in Asymmetric Catalysis, ACS-Symposium Series 880; Malhotra, S. V., Ed.; 2004; pp 145-160
  38. Song, C. E. Chem. Commun. 2004, 1033-1043
  39. Sun, J.; Forsyth, M.; MacFarlane, D. R. J. Phy. Chem. B 1998, 102, 8858-8864 https://doi.org/10.1021/jp981159p
  40. Mujatake, K.; Yamamoto, K.; Endo, K.; Tsuchida, E. J. Org. Chem. 1998, 63, 7522-7524 https://doi.org/10.1021/jo980473c
  41. Kim, H. S.; Kim, Y. J.; Bae, J. Y.; Kim, S. J.; Lah, M. S.; Chin, C. S. Organometallics 2003, 22, 2498-2504 https://doi.org/10.1021/om030005f
  42. Dzyuba, S. V.; Barsch, R. A. Chem. Phys. Chem. 2002, 3, 161-166 https://doi.org/10.1002/1439-7641(20020215)3:2<161::AID-CPHC161>3.0.CO;2-3
  43. Huddleston, J. G.; Visser, A. E.; Reichert, W. N.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156-164 https://doi.org/10.1039/b103275p
  44. Grodkowski, J.; Neta, P. J. Phys. Chem. A 2002, 106, 11130-11134 https://doi.org/10.1021/jp021498p
  45. Grodkowski, J.; Neta, P. J. Phys. Chem. A 2002, 106, 5468-5473 https://doi.org/10.1021/jp020165p
  46. McLean, A. J.; Muldoon, M. J.; Gordon, C. M.; Dunkin, I. R. Chem. Commun. 2002, 1880-1881
  47. Owens, G. S.; Abu-Omar, M. M. J. Mol. Catal. A: Chem. 2002, 187, 215-225 https://doi.org/10.1016/S1381-1169(02)00236-4
  48. Tait, S.; Osteryoung, R. A. Inorg. Chem. 1984, 23, 4352-4360 https://doi.org/10.1021/ic00193a049
  49. MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. J. Phys. Chem. B 1999, 103, 4164-4170 https://doi.org/10.1021/jp984145s
  50. Davis, J. H. Jr.; Forrester, K. J. Tetrahedron Lett. 1999, 40, 1621-1622 https://doi.org/10.1016/S0040-4039(99)00025-8
  51. Vestergaard, B.; Bjerrum, N. J.; Petrushina, I.; Hjuler, H. A.; Berg, R. W.; Begtrup, M. J. Electrochem. Soc. 1993, 140, 3108-3113 https://doi.org/10.1149/1.2220994
  52. Tomoharu, N. Sanyo Chem. Ind. Ltd.: JP 11273734, 1999
  53. Mamantov, G. J. C.; Dunstan, T. D. J. Electrochemical Systems Inc.: U.S. Patent 5552241, 1996
  54. Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965-967
  55. Fuller, J.; Carlin, R. T.; De Long, H. C.; Haworth, D. J. Chem. Soc., Chem. Commun. 1994, 299-300
  56. Howarth, J.; Hanlon, K.; Fayne, D.; McCormac, P. Tetrahedron Lett. 1997, 38, 3097-3100 https://doi.org/10.1016/S0040-4039(97)00554-6
  57. Chauvin, Y.; Mussmann, L.; Olivier, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2698-2700 https://doi.org/10.1002/anie.199526981
  58. Chauvin, Y.; Oliver-Bourbigou, H. CHEMTECH 1995, 26-30
  59. Koch, V. R.; Dominey, L. A.; Nanjundiah, C.; Ondrechen, M. J. J. Electrochem. Soc. 1996, 143, 798-803 https://doi.org/10.1149/1.1836540
  60. Nanjundiah, C.; McDevitt, S. F.; Koch, V. R. J. Electrochem. Soc. 1997, 144, 3392-3397 https://doi.org/10.1149/1.1838024
  61. Nitta, K.; Murase, K.; Matsumoto, H.; Miyazaki, Y.; Hirato, T.; Awakura, Y. Kidorui 1998, 32, 270-271
  62. Koch, V. R.; Nanjundiah, C.; Appetecchi, G. B.; Scrosati, B. J. Electrochem. Soc. 1995, 142, L116-L118 https://doi.org/10.1149/1.2044332
  63. Kemperman, G. J.; Roeters, T. A.; Hilberink, P. W. Eur. J. Org. Chem. 2003, 1681-1686
  64. Boovanahalli, S. K.; Kim, D. W.; Chi, D. Y. J. Org. Chem. 2004, 69, 3340-3344 https://doi.org/10.1021/jo035886e
  65. Chan, C. C.; Huang, X. Synthesis 1982, 452-454
  66. Su, C.; Chen, Z.-C.; Zheng, Q.-G. Synth. Commun. 2003, 33, 2817-2822 https://doi.org/10.1081/SCC-120022170
  67. Belen'kii, L. I. Heterocycles 1994, 37, 2029-2049 https://doi.org/10.3987/REV-93-SR16
  68. Reinecke, M. G.; Johnson, H. W.; Sebastian, J. F. J. Am. Chem. Soc. 1963, 85, 2859-2860 https://doi.org/10.1021/ja00901a048
  69. Jorapur, Y. R.; Lee, C.-H.; Chi, D. Y. Org. Lett. 2005, 7, 1231-1234 https://doi.org/10.1021/ol047446v
  70. Starks, C. M.; Liotta, C. L.; Halpern, M. Phase-Transfer Catalysis; Charpman and Hall: NY, 1994
  71. O'Donnell, M. J.; Esikova, I. A.; Mi, A.; Shullenberger, D. F.; Wu, S. In Phase- Transfer Catalysis, ACS Symposium Series 659; Halpern, M. E., Ed.; American Chemical Society: Washington, DC, 1997; Chapter 10
  72. Nelson, A. Angew. Chem., Int. Ed. 1999, 38, 1583-1585 https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1583::AID-ANIE1583>3.0.CO;2-E
  73. Lourenco, N. M. T.; Afonso, C. A. M. Tetrahedron 2003, 59, 789-794 https://doi.org/10.1016/S0040-4020(02)01621-6
  74. Martin, D.; Weise, A.; Niclas, H. Angew. Chem., Int. Ed. Engl. 1967, 6, 318-334 https://doi.org/10.1002/anie.196703181
  75. Normant, H. Angew. Chem., Int. Ed. Engl. 1967, 6, 1046-1067 https://doi.org/10.1002/anie.196710461
  76. Kim, D. W.; Hong, D. J.; Seo, J. W.; Kim, H. S.; Kim, H. G.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2004, 69, 3186-3189 https://doi.org/10.1021/jo035563i
  77. Shaikh, A.-A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951-976 https://doi.org/10.1021/cr950067i
  78. Rolf, K.; Achim, A.; Holger, T.; Gabrille, S.; Alfred, W. Ger. Offen. DE 4 119 890, 1991; Chem. Abstr. 1993, 118, 66614
  79. Schnell, H. Chemistry and Physics of Polycarbonates; Interscience Publishers: New York, 1964; Vol. 9, p 91
  80. Kondo, K.; Sonoda, N.; Tsutsumi, S. Tetrahedron Lett. 1971, 12, 4885-4886 https://doi.org/10.1016/S0040-4039(01)97577-X
  81. Fenton, D. M.; Steinwand, P. J. J. Org. Chem. 1974, 39, 701-704 https://doi.org/10.1021/jo00919a026
  82. Jorapur, Y. R.; Chi, D. Y. J. Org. Chem. 2005, 70, 10774-10777 https://doi.org/10.1021/jo051722h
  83. Kerns, R. J.; Vlahov, I. R.; Linhardt, R. J. Carbohydr. Res. 1995, 267, 143-152 https://doi.org/10.1016/0008-6215(94)00288-Q
  84. Vogel, A. I. Vogel's Textbook of Practical Organic Chemistry, 5th Ed.; Wiley: New York, 1984; p 644
  85. Murugesan, S.; Karst, N.; Islam, T.; Wiencek, J. M.; Linhardt, R. J. Synlett 2003, 1283-1286
  86. Xu, L.-W.; Li, L.; Xia, C.-G.; Zhao, P.-Q. Tetrahedron Lett. 2004, 45, 2435-2438 https://doi.org/10.1016/j.tetlet.2004.01.042
  87. Oh, C. R.; Choo, D. J.; Shim, W. H.; Lee, D. H.; Roh, E. J.; Lee, S.-g.; Song, C. E. Chem. Commun. 2003, 1100-1101
  88. Nunomoto, S.; Kawakami, Y.; Yamashita, Y.; Takeuchi, H.; Eguichi, S. J. Chem. Soc., Perkin Trans. 1 1990, 111-114
  89. Kornblum, N.; Seltzer, R.; Haberfield, P. J. Am. Chem. Soc. 1963, 85, 1148-1154 https://doi.org/10.1021/ja00891a025
  90. Cardillo, B.; Casnati, G.; Pochini, A.; Ricca, A. Tetrahedron 1967, 23, 3771-3783 https://doi.org/10.1016/0040-4020(67)80025-5
  91. Heaney, H.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1973, 499-500 https://doi.org/10.1039/p19730000499
  92. Earle, M. J.; McCormac, P. B.; Seddon, K. R. Chem. Commun. 1998, 2245-2246
  93. Shieh, W.-C.; Lozanov, M.; Repi, O. Tetrahedron Lett. 2003, 44, 6943-6945 https://doi.org/10.1016/S0040-4039(03)01711-8
  94. Shieh, W.-C.; Lozanov, M.; Loo, M.; Repi, O.; Blacklock, T. J. Tetrahedron Lett. 2003, 44, 4563-4565 https://doi.org/10.1016/S0040-4039(03)00992-4
  95. Jorapur, Y. R.; Chi, D. Y. Tetrahedron Lett. 2006, 47, 2435-2438 https://doi.org/10.1016/j.tetlet.2006.01.129
  96. Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. Tetrahedron Lett. 2003, 44, 1047-1050 https://doi.org/10.1016/S0040-4039(02)02735-1
  97. Song, C. E.; Oh, C. R.; Roh, E. J.; Choo, D. J. Chem. Commun. 2000, 1743-1744
  98. Seebach, D. Angew. Chem., Int. Ed. Engl. 1990, 29, 1320-1367 https://doi.org/10.1002/anie.199013201
  99. Gerstenberger, M. R. C.; Haas, A. Angew. Chem., Int. Ed. Engl. 1981, 20, 647-667 https://doi.org/10.1002/anie.198106471
  100. Mascaretti, O. A. Aldrichimica Acta 1993, 26, 47-58
  101. Liotta, C. L.; Harris, H. P. J. Am. Chem. Soc. 1974, 96, 2250-2252 https://doi.org/10.1021/ja00814a044
  102. Kim, D. W.; Song, C. E.; Chi, D. Y. J. Am. Chem. Soc. 2002, 124, 10278-10279 https://doi.org/10.1021/ja026242b
  103. Kim, D. W.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2003, 68, 4281-4285 https://doi.org/10.1021/jo034109b
  104. Chu, C.-K.; Kim, J.-H.; Kim, D. W.; Chung, K.-H.; Katzenellenbogen, J. A.; Chi, D. Y. Bull. Korean Chem. Soc. 2005, 26, 599-602 https://doi.org/10.5012/bkcs.2005.26.4.599
  105. Kim, H. W.; Jeong, J. M.; Lee, Y.-S.; Chi, D. Y.; Chung, K.-H.; Lee, D. S.; Chung, J.-K.; Lee, M. C. Appl. Radiat. Isot. 2004, 61, 1241-1246 https://doi.org/10.1016/j.apradiso.2004.02.027
  106. Kim, D. W.; Choe, Y. S.; Chi, D. Y. Nucl. Med. Biol. 2003, 30, 345-350 https://doi.org/10.1016/S0969-8051(03)00017-9
  107. Wheeler, C.; West, K. N.; Liotta, C. L.; Eckert, C. A. Chem. Commun. 2001, 887-888
  108. Liu, Z.; Chen, Z.-C.; Zheng, Q.-G. Synthesis 2004, 33-36
  109. Judeh, Z. M. A.; Shen, H.-Y.; Chi, B. C.; Feng, L.-C.; Selvasothi, S. Tetrahedron Lett. 2002, 43, 9381-9384 https://doi.org/10.1016/S0040-4039(02)02327-4
  110. Chiappe, C.; Pieraccini, D.; Saullo, P. J. Org. Chem. 2003, 68, 6710-6715 https://doi.org/10.1021/jo026838h
  111. Lancaster, N. L.; Salter, P. A.; Welton, T.; Young, G. B. J. Org. Chem. 2002, 67, 8855-8861 https://doi.org/10.1021/jo026113d
  112. Crowhurst, L.; Lancaster, N. L.; Pérez Arlandis, J. M.; Welton, T. J. Am. Chem. Soc. 2004, 126, 11549-11555 https://doi.org/10.1021/ja046757y
  113. Lancaster, N. L. J. Chem. Res. 2005, 413-417
  114. Glenn, A. G.; Jones, P. B. Tetrahedron Lett. 2004, 45, 6967-6969 https://doi.org/10.1016/j.tetlet.2004.07.050

Cited by

  1. Direct Arylation of Pyrrole Derivatives in Ionic Liquids vol.2011, pp.15, 2011, https://doi.org/10.1002/ejoc.201100004
  2. Intramolecular Cycloalkylation of Pyrrole in Ionic Liquids and Immobilized Ionic Liquids vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3130
  3. Recent advances in ionic liquids: green unconventional solvents of this century: part I vol.4, pp.4, 2011, https://doi.org/10.1080/17518253.2011.572294
  4. Controlling chlorination versus cyclosulfonation of cis-diols using ionic liquid solvents vol.36, pp.11, 2012, https://doi.org/10.1039/c2nj40180k
  5. Room temperature synthesis of 2H-1,4-benzoxazine derivatives using a recoverable ionic liquid medium vol.12, pp.2, 2014, https://doi.org/10.1007/s10311-014-0456-4
  6. Methanolysis of poly(lactic acid) using acidic functionalized ionic liquids as catalysts vol.131, pp.19, 2014, https://doi.org/10.1002/app.40817
  7. Synthesis, characterization and thermophysical properties of three neoteric solvents-ionic liquids based on choline chloride vol.30, pp.1, 2014, https://doi.org/10.1007/s40242-014-3346-1
  8. Ionic Liquids: Additives for Manipulating the Nucleophilicity vol.44, pp.7, 2015, https://doi.org/10.1007/s10953-015-0356-7
  9. Ionic liquid/water mixture promoted organic transformations vol.5, pp.63, 2015, https://doi.org/10.1039/C5RA08625F
  10. Room Temperature Ionic Liquids as Green Solvent Alternatives in the Metathesis of Oleochemical Feedstocks vol.21, pp.2, 2016, https://doi.org/10.3390/molecules21020184
  11. Ionic Liquids: An Environmentally Friendly Media for Nucleophilic Substitution Reactions vol.37, pp.28, 2006, https://doi.org/10.1002/chin.200628251
  12. -Protected 1,2-Amino Alcohols and the Corresponding Epoxides in High Optical Purity vol.2009, pp.17, 2009, https://doi.org/10.1002/ejoc.200900032
  13. Synthesis and Properties of Ionic Liquids:Imidazolium Tetrafluoroborates with Unsaturated Side Chains vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.847
  14. Oxidation of Aromatic Aldehydes with Tetrabutylammonium Fluoride:Competition with the Cannizzaro Reaction vol.27, pp.8, 2006, https://doi.org/10.5012/bkcs.2006.27.8.1203
  15. Ionic-liquid-promoted Michaelis–Arbuzov rearrangement vol.47, pp.43, 2006, https://doi.org/10.1016/j.tetlet.2006.08.050
  16. Polymer-supported Zinc Tetrahalide Catalysts for the Coupling Reactions of CO2 and Epoxides vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2025
  17. Synthesis and Characterization of Quaternary Ammonium-based Ionic Liquids Containing an Alkyl Carbonate Group vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2299
  18. Facile α-Ketonization of Carbonyl Compounds Utilizing CuBr2 on Alumina vol.28, pp.5, 2006, https://doi.org/10.5012/bkcs.2007.28.5.871
  19. Synthesis and Physicochemical Properties of Ionic Liquids: 1-Alkenyl-2,3-dimethylimidazolium Tetrafluoroborates vol.28, pp.9, 2006, https://doi.org/10.5012/bkcs.2007.28.9.1562
  20. Synthesis and Properties of Pyrrolidinium and Piperidinium Bis(trifluoromethanesulfonyl)imide Ionic Liquids with Allyl Substituents vol.28, pp.9, 2006, https://doi.org/10.5012/bkcs.2007.28.9.1567
  21. Efficient catalyst reuse by simple dissolution in non-conventional media vol.2007, pp.26, 2007, https://doi.org/10.1039/b607483a
  22. Ring-opening polymerization of lactones by rare-earth metal triflates and by their reusable system in ionic liquids vol.63, pp.35, 2007, https://doi.org/10.1016/j.tet.2007.05.073
  23. Chiral bis(oxazoline)–copper complex catalyzed Diels–Alder reaction in ionic liquids: remarkable reactivity and selectivity enhancement, and efficient recycling of the catalyst vol.48, pp.51, 2006, https://doi.org/10.1016/j.tetlet.2007.10.073
  24. Efficient Oxidation of Benzylic Alcohols to Aldehydes and Ketones in Ionic Liquid Using N-Chlorosuccinimide/AlCl3.6H2O vol.29, pp.1, 2006, https://doi.org/10.5012/bkcs.2008.29.1.027
  25. Efficient Oxidation of Benzylic Alcohols to Aldehydes and Ketones in Ionic Liquid Using N-Chlorosuccinimide/AlCl3.6H2O vol.29, pp.1, 2006, https://doi.org/10.5012/bkcs.2008.29.1.027
  26. Lithium Chloride-Imidazolium Chloride Melts for the Coupling Reactions of Propylene Oxide and CO2 vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.148
  27. Halogenation of organic compounds in ionic liquids vol.65, pp.29, 2009, https://doi.org/10.1016/j.tet.2009.04.092
  28. Arylation of Sensitive 1-(Pyrrolidin-1-yl)-diazen-1-ium-diolate in Ionic Liquids vol.40, pp.9, 2006, https://doi.org/10.1080/00397910903074079
  29. Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes vol.12, pp.8, 2010, https://doi.org/10.1039/b915989d
  30. The tetramethylguanidine-based ionic liquid-catalyzed synthesis of propylene glycol methyl ether vol.34, pp.11, 2006, https://doi.org/10.1039/c0nj00502a
  31. Facile nucleophilic substitution at the C3a tertiary carbon of the 3a-bromohexahydropyrrolo[2,3-b]indole scaffold vol.8, pp.23, 2006, https://doi.org/10.1039/c0ob00327a
  32. Fast and Easy Drying Method for the Preparation of Activated [18F]Fluoride Using Polymer Cartridge vol.32, pp.1, 2006, https://doi.org/10.5012/bkcs.2011.32.1.71