DOI QR코드

DOI QR Code

Synthesis of Novel Electrochemiluminescent Polyamine Dendrimers Functionalized with Polypyridyl Ru(II) Complexes and Their Electrochemical Properties

  • Lee, Do-Nam (Department of Chemistry, Kwangwoon University) ;
  • Park, Hee-Sang (Department of Chemistry, Kwangwoon University) ;
  • Kim, Eun-Hwa (Department of Chemistry, Kwangwoon University) ;
  • Jun, Young-Moo (Department of Chemistry, Kwangwoon University) ;
  • Lee, Ja-Young (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Lee, Won-Yong (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Kim, Byeong-Hyo (Department of Chemistry, Kwangwoon University)
  • Published : 2006.01.20

Abstract

Polyamine dendrimers functionalized with electrochemiluminescent (ECL) polypyridyl Ru(II) complexes, dend-$[CO-(CH_2)_3-mbpy{\cdot}Ru(L)_2]_3(PF_6)_6$ (dend: N$(CH_2CH_2NH)_3$-, L: bpy, o-phen, phen-Cl, DTDP), were synthesized through the complexation of dendritic polypyridyl ligands to Ru(II) complexes. Their electrochemical redox potentials, photoluminescence (PL), and relative ECL intensities were studied. The ECL emissions produced by the reaction between the electro-oxidized $Ru^{3+}$ species of polyamine dendrimers and tripropylamine as a coreactant were measured in a static system with potential cycles between 0.8 and 1.3 V or through flow injection analysis with a potential of +1.3 V, and were compared to that of $[Ru(o-phen)_3](PF_6)_2{\cdot}Dend-[CO-(CH_2)_3-mbpy{\cdot}Ru(bpy)_2]_3(PF_6)_6$ showed an ECL intensity that was two-fold greater than that of the reference complex $[Ru(o-phen)_3](PF_6)_2$.

Keywords

References

  1. Newkome, G. R.; Moorefield, C. N.; Baker, G. R.; Johnson, A. L.; Behera, R. K. Angew. Chem. 1991, 103, 1205-1207 https://doi.org/10.1002/ange.19911030944
  2. Balzani, V.; Scandola, S. Supramolecular Photochemistry; Horwood: Chichester, U.K. 1991
  3. Campagna, S.; Denti, G.; Serroni, S.; Ciano, M.; Balzani, V. Inorg. Chem. 1991, 30, 3728-3732 https://doi.org/10.1021/ic00019a032
  4. Serroni, S.; Denti, G. Inorg. Chem. 1992, 31, 4251-4255 https://doi.org/10.1021/ic00047a009
  5. Denti, G.; Campagna, S.; Serroni, S.; Ciano, M.; Balzani, V. J. Am. Chem. Soc. 1992, 114, 2944-2950 https://doi.org/10.1021/ja00034a029
  6. Newkome, G. R.; Moorefield, C. N.; Vogtle, F. Dendrimers and Dendrons; WEILY-VCH: Weinheim, Germany, 2001
  7. Meyer, T. J. Acc. Chem. Res. 1989, 22, 163-170
  8. Newkome, G. R.; Cardullo, F.; Constable, E. C.; Moorefield, C. N.; Thompson, A. M. W. C. J. Chem. Soc. Commun. 1993, 925-927
  9. Mouline, F.; Djakovitch, L.; Boese, R.; Gloaguen, B.; Thiel, W.; Fillaut, J.-L.; Delville, M.-H.; Astruc, D. Angew. Chem. Int. Ed. Engl. 1993, 32, 1075-1077 https://doi.org/10.1002/anie.199310751
  10. Knapen, J. W. J.; van der Made, A. W.; de Wilde, J. C.; van Leewen, P. W. N. M.; Wijkens, P.; Grove, D. M.; van Kotur, G. Nature 1994, 372, 659-663 https://doi.org/10.1038/372659a0
  11. Cuadrado, I.; Morán, M.; Casado, C. M.; Alonso, B.; Lobete, L.; García, B.; Ibisate, M.; Losada, J. Organometallics 1996, 15, 5278-5280 https://doi.org/10.1021/om9605948
  12. Harriman, A.; Ziessel, R. Chem. Comm. 1996, 1707-1716
  13. Serroni, S.; Juris, A.; Venturi, M.; Campagna, S.; Resino, I. R.; Denti, G.; Credi, A.; Balzani, V. J. Mater. Chem. 1997, 7, 1227-1236 https://doi.org/10.1039/a700426e
  14. Cuadrado, I.; Casado, C. M.; Alonso, B.; Morán, M.; Losada, J.; Belsky, V. J. Am. Chem. Soc. 1997, 119, 7613-7614 https://doi.org/10.1021/ja971496w
  15. Shu, C.-F.; Shen, H.-M. J. Mater. Chem. 1997, 7, 47-52 https://doi.org/10.1039/a604225b
  16. McCubbin, Q. J.; Stoddart, F. J.; Welton, T.; White, A. J. P.; Williams, D. J. Inorg. Chem. 1998, 37, 3753-3758 https://doi.org/10.1021/ic980067b
  17. Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Serroni, S.; Venturi, M. Acc. Chem. Res. 1998, 31, 3126-3134
  18. ben-Avraham, D.; Schulman, L. S.; Bossmann, S. H.; Turro, C.; Turro, N. J. J. Phys. Chem. B 1998, 102, 5088-5093 https://doi.org/10.1021/jp980135f
  19. Barigelletti, F.; Flamigni, L. Chem. Soc. Rev. 2000, 29, 1-12 https://doi.org/10.1039/a804246b
  20. Serroni, S.; Campagna, S.; Puntoriero, F.; Pietro, C. D.; McClenaghan, N. D.; Loiseau, F. Chem. Soc. Rev. 2001, 30, 367-375 https://doi.org/10.1039/b008670n
  21. Balzani, V.; Juris, A. Coord. Chem. Rev. 2001, 211, 97-115 https://doi.org/10.1016/S0010-8545(00)00274-5
  22. Beerens, H. I.; Wijkens, P.; Jastrzebski, J. T. B. H.; Verpoort, F.; Verdonck, L.; van Koten, G. J. Organomet. Chem. 2000, 603, 244-248 https://doi.org/10.1016/S0022-328X(00)00186-8
  23. Constable, E. C.; Eich, O.; Housecroft, C. E.; Rees, D. C. Inorg. Chim. Acta 2000, 300-302, 158-168
  24. Ghaddar, T. H.; Wishart, J. F.; Kirby, J. P.; Whitesell, J. K.; Fox, M. A. J. Am. Chem. Soc. 2001, 123, 12832-12836 https://doi.org/10.1021/ja011615e
  25. Lee, W.-Y. Mikrochim. Acta 1997, 127, 19-39 https://doi.org/10.1007/BF01243160
  26. Lee, W.-Y.; Nieman, T. A. Anal. Chem. 1995, 67, 1789-1796 https://doi.org/10.1021/ac00107a007
  27. Knight, A. W.; Greenway, G. M. Analyst 1996, 121, 101R-106R
  28. Gerardi, R. D.; Barnett, N. W.; Lewis, S. W. Anal. Chim. Acta 1999, 378, 1-41
  29. Rubinstein, I.; Bard, A. J. Anal. Chem. 1983, 55, 1580-1582 https://doi.org/10.1021/ac00260a030
  30. Noffsinger, J. B.; Danielson, N. D. Anal. Chem. 1987, 59, 865-868 https://doi.org/10.1021/ac00133a017
  31. Brune, S. N.; Bobbitt, D. R. Talanta 1991, 38, 419-424 https://doi.org/10.1016/0039-9140(91)80080-J
  32. Brune, S. N.; Bobbitt, D. R. Anal. Chem. 1992, 64, 166-170 https://doi.org/10.1021/ac00026a014
  33. Uchikura, K.; Kirisawa, M. Chem. Lett. 1991, 1373-1376
  34. Downey, T. M.; Nieman, T. A. Anal. Chem. 1992, 64, 261-268 https://doi.org/10.1021/ac00027a005
  35. 35. Martin, A. F.; Nieman, T. A. Anal. Chim. Acta 1993, 281, 475-481 https://doi.org/10.1016/0003-2670(93)85005-5
  36. Chen, X.; Sato, M. Anal. Sci. 1995, 11, 749-754 https://doi.org/10.2116/analsci.11.749
  37. Zorzi, M.; Pastore, P.; Magno, F. Anal. Chem. 2000, 72, 4934-4939 https://doi.org/10.1021/ac991222m
  38. Tokel, N. E.; Bard, A. J. J. Am. Chem. Soc. 1972, 94, 2862-2863 https://doi.org/10.1021/ja00763a056
  39. Storrier, G. D.; Takada, K.; Abruòa, H. D. Langmuir 1999, 15, 872-884
  40. Zhou, M.; Roovers, J. Macromolecules 2001, 34, 244-252 https://doi.org/10.1021/ma001463s
  41. Zho, M.; Roovers, J.; Robertson, G. P.; Grover, C. P. Anal. Chem. 2003, 75, 6708-6717 https://doi.org/10.1021/ac034664d
  42. Park, S. J.; Kim, D. H.; Park, H. J.; Lee, D. N.; Kim, B. H.; Lee, W.-Y. Anal. Sci. 2001, 17, a93-a96
  43. Lee, D. N.; Park, H. J.; Kim, D. H.; Lee, S. W.; Park, S. J.; Kim, B. H.; Lee, W.-Y. Bull. Korean Chem. Soc. 2002, 23, 13-14 https://doi.org/10.5012/bkcs.2002.23.1.013
  44. Kim, B. H.; Lee, D. N.; Park, H. J.; Min, J. H.; Park, S. J.; Lee, W.-Y. Talanta 2004, 62, 595-602 https://doi.org/10.1016/j.talanta.2003.09.001
  45. Lee, D. N.; Min, J. H.; Kim, H. M.; Jun, Y. M.; Choi, H. N.; Lee, W.-Y.; Kim, B. H. J. Organomet. Chem. 2005, 690, 2002-2008 https://doi.org/10.1016/j.jorganchem.2004.11.048
  46. Lee, D. N.; Kim, J. K.; Park, H. S.; Jun, Y. M.; Hwang, R. Y.; Lee, W.-Y.; Kim, B. H. Synth. Metals 2005, 150, 93-100 https://doi.org/10.1016/j.synthmet.2005.01.014
  47. Ciana, L. D.; Hamachi, I.; Meyer, T. J. J. Org. Chem. 1989, 54, 1723-1731
  48. Bernhard, S.; Belser, P. Synthesis 1996, 192-194
  49. Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Inorg. Chem. 1978, 17, 3334-3341 https://doi.org/10.1021/ic50190a006

Cited by

  1. Electrochemical sugar recognition using a ruthenium complex with boronic acid assembled on polyamidoamine (PAMAM) dendrimer vol.4, pp.9, 2012, https://doi.org/10.1039/c2ay25518a
  2. Complex: The Coreactant Effect of PAMAM Dendrimers in an Aqueous Medium vol.51, pp.20, 2012, https://doi.org/10.1021/ic301239x
  3. Synthesis and photophysical properties of new ruthenium(II) charge-transfer sensitizers containing a 4,7-bis(E-carboxyvinyl)-1,10-phenanthroline ligand vol.145, pp.7, 2014, https://doi.org/10.1007/s00706-014-1175-z
  4. Electrochemiluminescent (ECL) [Ru(bpy)3]2+/PAMAM dendrimer reactions: coreactant effect and 5-fluorouracil/dendrimer complex formation vol.408, pp.25, 2016, https://doi.org/10.1007/s00216-016-9816-1
  5. Efficient Blue Light Emitting Diode by Using Anthracene Derivative with 3,5-Diphenylphenyl Wings at 9- and 10-Position vol.28, pp.3, 2006, https://doi.org/10.5012/bkcs.2007.28.3.443
  6. Photoresponsive Azobenzene-cored Dendrons with Terminal Vinyl Groups vol.28, pp.6, 2006, https://doi.org/10.5012/bkcs.2007.28.6.983
  7. Photoresponsive Arylether Dendrimers with Azobenzene Core and Terminal Vinyl Groups vol.29, pp.4, 2006, https://doi.org/10.5012/bkcs.2008.29.4.761
  8. Star-shaped electrochemiluminescent metallodendrimers with central polypyridyl Ru(II) complexes: Synthesis and their photophysical and electrochemical properties vol.693, pp.4, 2006, https://doi.org/10.1016/j.jorganchem.2007.11.045
  9. Electrogenerated Chemiluminescence and Its Biorelated Applications vol.108, pp.7, 2006, https://doi.org/10.1021/cr068083a
  10. Synthesis and properties of electrochemiluminescent dinuclear Ru(II) complexes assembled with ester-bridged bis(bipyridine) ligands vol.362, pp.5, 2006, https://doi.org/10.1016/j.ica.2008.08.002