DOI QR코드

DOI QR Code

Oxidation of Dibenzyl Sulfide via an Oxygen Transfer from Palladium Nitrate

  • WhangPark, Young-ae (Department of Chemistry, College of Natural Sciences, Sangmyung University) ;
  • Na, Yong-Ho (Department of Chemistry, College of Natural Sciences, Sangmyung University) ;
  • Baek, Du-Jong (Department of Chemistry, College of Natural Sciences, Sangmyung University)
  • Published : 2006.12.20

Abstract

Dibenzyl sulfide was oxidized at the a-carbon to yield benzaldehyde in the presence of $Pd(NO_3)_2$. Oxygen itself could not oxidize the sulfide directly, instead the nitrato ligand of the palladium complex transferred oxygen to dibenzyl sulfide to form benzaldehyde. The X-ray crystal structure of the intermediate complex, cis-[$Pd(NO_3)_2${$S(CH_2C_6H_5)_2$}$_2$], revealed that the nitrato ligand was unidentate. Para-substituted dibenzyl sulfides I, $(YC_6H_4CH_2)_2S $wherein Y = $OCH_3$, $CH_3$, Cl, CN, or $NO_2$, were synthesized and reacted with palladium nitrate, and those with electron-donating substituents (Y = $OCH_3$ and $CH_3$) were good substrates for the oxidation reaction with palladium nitrate. Thus, the reaction mechanism of the oxygen transfer was proposed to include nucleophilic benzylic carbon.

Keywords

References

  1. Reid, E. E. Organic Chemistry of Bivalent Sulfur, II; Chemical Publishing: New York, U.S.A., 1960
  2. Barnard, D.; Bateman, L.; Cunneen, J. I. In Organic Sulfur Compounds, I; Kharasch, N., Ed.; Pergamon Press: New York, U.S.A., 1961
  3. Wallace, T. J.; Schriesheim, A. Tetrahedron Lett. 1963, 4, 1131 https://doi.org/10.1016/S0040-4039(01)90789-0
  4. Wallace, T. J.; Schriesheim, A.; Jacobson, N. J. Org. Chem. 1964, 29, 888 https://doi.org/10.1021/jo01027a031
  5. Wallace, T. J.; Pobiner, H.; Baron, F. A.; Schriesheim, A. Chem. Ind. 1965, 945
  6. Clarkson, S. G.; Basolo, F. Inorg. Chem. 1973, 12, 1528 https://doi.org/10.1021/ic50125a013
  7. Ercolani, C.; Pennesi, G. Inorg. Chim. Acta 1985, 101, L41 https://doi.org/10.1016/S0020-1693(00)87642-2
  8. O'Shea, S. K.; Wang, W.; Wade, R. S.; Castro, C. E. J. Org. Chem. 1996, 61, 6388 https://doi.org/10.1021/jo960546x
  9. McKillop, A.; Taylor, E. C. Endeavour 1976, 35, 88 https://doi.org/10.1016/0160-9327(76)90034-X
  10. Cornelis, A.; Laszlo, P. Synthesis 1985, 909
  11. Tomi, F.; Li Kam Wah, H.; Postel, M. New J. Chem. 1988, 12, 289
  12. Li Kam Wah, H.; Postel, M.; Tomi, F. Inorg. Chem. 1989, 28, 233 https://doi.org/10.1021/ic00301a015
  13. Munyejabo, V.; Guillaume, P.; Postel, M. Inorg. Chim. Acta 1994, 221, 133 https://doi.org/10.1016/0020-1693(94)03974-7
  14. Addison, C. C. Coord. Chem. Rev. 1966, 1, 58 https://doi.org/10.1016/S0010-8545(00)80154-X
  15. Rosenthal, M. R. J. Chem. Ed. 1973, 50, 331 https://doi.org/10.1021/ed050p331
  16. Jones, C. J.; McCleverty, J. A.; Rothin, A. S. J. Chem. Soc., Dalton Trans. 1986, 2055
  17. Hwang, S. W.; Park, Y. W. J. Ind. Eng. Chem. 2000, 6, 125
  18. Trogler, W. C.; Marzilli, L. G. Inorg. Chem. 1974, 13, 1008 https://doi.org/10.1021/ic50134a052
  19. Bhaduri, S. A.; Bratt, I.; Johnson, B. F. G.; Khair, A.; Segal, J. A.; Walters, R.; Zuccaro, C. J. Chem. Soc., Dalton Trans. 1981, 234
  20. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923 https://doi.org/10.1021/jo00408a041

Cited by

  1. Electrochemical reactions of lithium–sulfur batteries: an analytical study using the organic conversion technique vol.16, pp.20, 2014, https://doi.org/10.1039/C4CP00958D
  2. Interactions Involved in Oxidation and Reductive Elimination vol.139, pp.3, 2017, https://doi.org/10.1021/jacs.6b10853
  3. xanthate intermediates: an extension to the Chugaev elimination vol.16, pp.10, 2018, https://doi.org/10.1039/C8OB00024G
  4. Structural and Optical Properties of a Pd(II) Complex with 1-Nonyl-3,4-bis(methylthio)pyrrole vol.29, pp.3, 2006, https://doi.org/10.5012/bkcs.2008.29.3.679
  5. Molar‐Ratio‐Dependent Supramolecular Isomerism: AgI Coordination Polymers with Bis(cyanobenzyl)sulfides vol.19, pp.41, 2006, https://doi.org/10.1002/chem.201302633
  6. Anion-Directed Coordination Networks of a Flexible S-Pivot Ligand and Anion Exchange in the Solid State vol.15, pp.11, 2015, https://doi.org/10.1021/acs.cgd.5b01050