DOI QR코드

DOI QR Code

Coherent Two-Dimensional Optical Spectroscopy

  • Cho, Min-Haeng (Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University)
  • Published : 2006.12.20

Abstract

Theoretical descriptions of two-dimensional (2D) vibrational and electronic spectroscopy are presented. By using a coupled multi-chromophore model, some examples of 2D spectroscopic studies of peptide solution structure determination and excitation transfer process in electronically coupled multi-chromophore system are discussed. A few remarks on perspectives of this research area are given.

Keywords

References

  1. Hamm, P.; Lim, M.; DeGrado, W. F.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. USA 1999, 96, 2036 https://doi.org/10.1073/pnas.96.5.2036
  2. Khalil, M.; Demirdöven, N.; Tokmakoff, A. J. Phys. Chem. A 2003, 107, 5258 https://doi.org/10.1021/jp0219247
  3. Woutersen, S.; Hamm, P. J. Phys. Cond. Matt. 2002, 14, R1035 https://doi.org/10.1088/0953-8984/14/5/308
  4. Wright, J. C. Int. Rev. Phys. Chem. 2002, 21, 185 https://doi.org/10.1080/01442350210124506
  5. Cho, M. In Advances in Multi-photon Processes and Spectroscopy; Lin, S. H.; Villaeys, A. A.; Fujimura, Y., Eds.; World Scientific: Singapore, 1999; Vol. 12, p 229
  6. Mukamel, S. Annu. Rev. Phys. Chem. 2000, 51, 691 https://doi.org/10.1146/annurev.physchem.51.1.691
  7. Jonas, D. M. Annu. Rev. Phys. Chem. 2003, 54, 425 https://doi.org/10.1146/annurev.physchem.54.011002.103907
  8. Kwac, K.; Cho, M. J. Phys. Chem. A 2003, 107, 5903 https://doi.org/10.1021/jp034727w
  9. Woutersen, S.; Mu, Y.; Stock, G.; Hamm, P. Chem. Phys. 2001, 266, 137 https://doi.org/10.1016/S0301-0104(01)00224-5
  10. Kwac, K.; Lee, H.; Cho, M. J. Chem. Phys. 2004, 120, 1477 https://doi.org/10.1063/1.1633549
  11. Kwac, K.; Cho, M. J. Raman Spectrosc. 2005, 36, 326 https://doi.org/10.1002/jrs.1303
  12. Kim, Y. S.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 11185 https://doi.org/10.1073/pnas.0504865102
  13. Zheng, J.; Kwak, K.; Asbury, J.; Chen, X.; Piletic, I. R.; Fayer, M. D. Science 2005, 309, 1338 https://doi.org/10.1126/science.1116213
  14. Brixner, T.; Stenger, J.; Vaswami, H.; Cho, M.; Blankenship, E.; Fleming, G. R. Nature 2005, 434, 625 https://doi.org/10.1038/nature03429
  15. Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley-Interscience: New York, 1986
  16. Ernst, R.; Bodenhausen, G.; Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon: Oxford, 1987
  17. Sanders, J. K. M.; Hunter, B. K. Modern NMR Spectroscopy; Oxford University Press: New York, 1994
  18. Cho, M.; Vaswani, H. M.; Brixner, T.; Stenger, J.; Fleming, G. R. J. Phys. Chem. B 2005, 109, 10542 https://doi.org/10.1021/jp050788d
  19. Cho, M.; Brixner, T.; Stiopkin, I.; Vaswani, H.; Fleming, G. R. J. Chinese Chem. Soc. 2006, 53, 15 https://doi.org/10.1002/jccs.200600002
  20. Cho, M. PhysChemComm. 2002, 5, 40 https://doi.org/10.1039/b110898k
  21. Cho, M. J. Chem. Phys. 2002, 116, 1562 https://doi.org/10.1063/1.1427720
  22. Cho, M. J. Chem. Phys. 2003, 119, 7003 https://doi.org/10.1063/1.1599344
  23. Cheon, S.; Cho, M. Phys. Rev. A 2005, 71, 013808 https://doi.org/10.1103/PhysRevA.71.013808
  24. Fleming, G. R.; Cho, M. Annu. Rev. Phys. Chem. 1996, 47, 103
  25. Wiersma, D. A.; de Boeij, W. P.; Pshenichnikov, M. S. Annu. Rev. Phys. Chem. 1998, 49, 99 https://doi.org/10.1146/annurev.physchem.49.1.99
  26. Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, 1995
  27. Sung, J.; Cho, M. J. Chem. Phys. 2000, 113, 7072 https://doi.org/10.1063/1.1312276
  28. Sung, J.; Silbey, R. J.; Cho, M. J. Chem. Phys. 2001, 115, 1422 https://doi.org/10.1063/1.1379751
  29. Cho, M. J. Chem. Phys. 2001, 115, 4424 https://doi.org/10.1063/1.1389844
  30. Zhang, W. M.; Meier, T.; Chernyak, V.; Mukamel, S. J. Chem. Phys. 1998, 108, 7763 https://doi.org/10.1063/1.476212
  31. Yang, M.; Fleming, G. R. J. Chem. Phys. 1999, 110, 2983 https://doi.org/10.1063/1.477893
  32. Agarwal, R.; Prall, B. S.; Rizvi, A. H.; Yang, M.; Fleming, G. R. J. Chem. Phys. 2002, 116, 6243 https://doi.org/10.1063/1.1459414
  33. Prall, B. S.; Parkinson, D. Y.; Fleming, G. R.; Yang, M.; Ishikawa, N. J. Chem. Phys. 2004, 120, 2537 https://doi.org/10.1063/1.1644794
  34. Kobayashi, T. J-aggregates; World Scientific: Singapore, 1996
  35. Cho, M.; Yu, J.-Y.; Joo, T.; Nagasawa, Y.; Passino, S. A.; Fleming, G. R. J. Phys. Chem. 1996, 100, 11944 https://doi.org/10.1021/jp9601983
  36. Cho, M.; Fleming, G. R. J. Chem. Phys. 2005, 123, 114506 https://doi.org/10.1063/1.1955444
  37. Ham, S.; Kim, J.-H.; Lee, H.; Cho, M. J. Chem. Phys. 2003, 118, 3491 https://doi.org/10.1063/1.1536980
  38. Cho, M. J. Chem. Phys. 2003, 118, 3480 https://doi.org/10.1063/1.1536979
  39. Eaton, G.; Symons, M. C. R. J. Chem. Soc. Faraday Trans. 1989, 85, 3257 https://doi.org/10.1039/f19898503257
  40. Kwac, K.; Cho, M. J. Chem. Phys. 2003, 119, 2247 https://doi.org/10.1063/1.1580807
  41. Woutersen, S.; Pfister, R.; Hamm, P.; Mu, Y. G.; Kosov, D. S.; Stock, G. J. Chem. Phys. 2002, 117, 6833 https://doi.org/10.1063/1.1506151
  42. Zanni, M. T.; Asplund, M. C.; Hochstrasser, R. M. J. Chem. Phys. 2001, 114, 4579 https://doi.org/10.1063/1.1346647
  43. DeCamp, M. F.; DeFlores, L.; McCracken, J. M.; Tokmakoff, A.; Kwac, K.; Cho, M. J. Phys. Chem. B 2005, 109, 11016 https://doi.org/10.1021/jp050257p
  44. Kwac, K.; Cho, M. J. Chem. Phys. 2003, 119, 2256 https://doi.org/10.1063/1.1580808
  45. Infrared Spectroscopy of Biomolecules; Mantsch, H. H.; Chapman, D., Eds.; Wiley-Liss: New York, 1996
  46. Infrared and Raman Spectroscopy of Biological Materials; Gremlich, H.-U.; Yan, B., Eds.; Marcel Dekker: New York, 2000
  47. Circular Dichroism: Principles and Applications; Berova, N.; Nakanishi, K.; Woody, R. W., Eds.; Wiley-Liss: New York, 2000
  48. Eker, F.; Griebenow, K.; Schweitzer-Stenner, R. J. Am. Chem. Soc. 2003, 125, 8178 https://doi.org/10.1021/ja034625j
  49. Han, W.-G.; Jalkanen, K. J.; Elstner, M.; Suhai, S. J. Phys. Chem. B 1998, 102, 2587 https://doi.org/10.1021/jp972299m
  50. Drozdov, A. N.; Grossfield, A.; Pappu, R. V. J. Am. Chem. Soc. 2004, 126, 2574 https://doi.org/10.1021/ja039051x
  51. Zanni, M. T.; Gnanakaran, S.; Stenger, J.; Hochstrasser, R. M. J. Phys. Chem. B 2001, 105, 6520 https://doi.org/10.1021/jp0100093
  52. Ge, N.-H.; Zanni, M. T.; Hochstrasser, R. M. J. Phys. Chem. A 2002, 106, 962 https://doi.org/10.1021/jp011768o
  53. Rubtsov, I. V.; Hochstrasser, R. M. J. Phys. Chem. B 2002, 106, 9165 https://doi.org/10.1021/jp020837b
  54. Hahn, S.; Lee, H.; Cho, M. J. Chem. Phys. 2004, 121, 1849 https://doi.org/10.1063/1.1763889
  55. Lee, K.-K.; Hahn, S.; Oh, K.-I.; Choi, J. S.; Joo, C.; Lee, H.; Han, H.; Cho, M. J. Phys. Chem. B 2006, in press
  56. Ham, S.; Hahn, S.; Lee, C.; Kim, T.-K.; Kwak, K.; Cho, M. J. Phys. Chem. B 2004, 108, 9333 https://doi.org/10.1021/jp048678e
  57. Woutersen, S.; Hamm, P. J. Chem. Phys. 2001, 115, 7737 https://doi.org/10.1063/1.1407842
  58. Choi, J. H.; Hahn, S.; Cho, M. Int. J. Quantum Chem. 2005, 104, 616 https://doi.org/10.1002/qua.20543
  59. Hahn, S.; Ham, S.; Cho, M. J. Phys. Chem. B 2005, 109, 11789 https://doi.org/10.1021/jp050450j
  60. Lee, C.; Cho, M. J. Phys. Chem. B 2004, 108, 20397 https://doi.org/10.1021/jp0471204
  61. Hahn, S.; Kim, S.-S.; Lee, C.; Cho, M. J. Chem. Phys. 2005, 123, 084905 https://doi.org/10.1063/1.1997151

Cited by

  1. Two-Dimensional Infrared Spectroscopy of Photoswitchable Peptides vol.59, pp.1, 2008, https://doi.org/10.1146/annurev.physchem.59.032607.093757
  2. Wave-Packet Interferometry and Molecular State Reconstruction: Spectroscopic Adventures on the Left-Hand Side of the Schrödinger Equation vol.59, pp.1, 2008, https://doi.org/10.1146/annurev.physchem.59.032607.093753
  3. Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy vol.12, pp.14, 2010, https://doi.org/10.1039/B923515A
  4. Polarization-Angle-Scanning Two-Dimensional Spectroscopy: Application to Dipeptide Structure Determination vol.115, pp.16, 2011, https://doi.org/10.1021/jp106458j
  5. Extracting Frequency-Frequency Correlation Function from Two-Dimensional Infrared Spectroscopy: Peak Shift Measurement vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3391
  6. Dipeptide Structure Determination by Vibrational Circular Dichroism Combined with Quantum Chemistry Calculations vol.8, pp.15, 2007, https://doi.org/10.1002/cphc.200700352
  7. Two-dimensional nonlinear optical activity spectroscopy of coupled multi-chromophore system vol.10, pp.26, 2008, https://doi.org/10.1039/b719263k
  8. Simultaneous photon absorption as a probe of molecular interaction and hydrogen-bond cooperativity in liquids vol.127, pp.15, 2006, https://doi.org/10.1063/1.2779033
  9. A New Benzophenone from Lindera fruticosa vol.28, pp.7, 2007, https://doi.org/10.5012/bkcs.2007.28.7.1209
  10. Doubly resonant two-dimensional three-wave-mixing spectroscopy of polypeptides: Structure–spectrum relationships vol.337, pp.1, 2006, https://doi.org/10.1016/j.chemphys.2007.06.049
  11. Dynamics of a Multimode System Coupled to Multiple Heat Baths Probed by Two-Dimensional Infrared Spectroscopy vol.111, pp.38, 2006, https://doi.org/10.1021/jp072880a
  12. Nonlinear optical activity measurement spectroscopy of coupled multi-chromophore systems vol.341, pp.1, 2007, https://doi.org/10.1016/j.chemphys.2007.05.004
  13. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  14. Coherent Two-Dimensional Optical Spectroscopy vol.108, pp.4, 2008, https://doi.org/10.1021/cr078377b
  15. For Structural Biology, Try Infrared Instead vol.17, pp.2, 2006, https://doi.org/10.1016/j.str.2009.01.002
  16. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments vol.18, pp.26, 2010, https://doi.org/10.1364/oe.18.027067