DOI QR코드

DOI QR Code

Preparation and Spectroscopic Characterization of Ilmenite-Type $CoTiO_3$ Nanoparticles

  • Zhou, Guo Wei (School of Chemical Engineering, Shandong Institute of Light Industry) ;
  • Lee, Don-Geun (Department of Chemistry, Pukyong National University) ;
  • Kim, Young-Hwan (Department of Chemistry, Pukyong National University) ;
  • Kim, Chang-Woo (Department of Chemistry, Pukyong National University) ;
  • Kang, Young-Soo (Department of Chemistry, Pukyong National University)
  • Published : 2006.03.20

Abstract

The cobalt titanate, $CoTiO_3$ nanoparticles have been prepared by calcinations of precursor obtained from a mixture of $TiO_2$ and $Co(OH)_2$ in aqueous cetyltrimethylammonium bromide (CTAB) solution. The nanoparticles were investigated with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric/differential thermal analysis (TGA/DTA) to determine the crystallite size and the phase composition. The spectroscopic characterizations of these nanoparticles were also done with UV-Vis spectroscopy and FT-Raman spectroscopy. XRD patterns show that $CoTiO_3$ phase was formed at calcinations temperature above 600 ${^{\circ}C}$. UV-Vis absorption spectra indicate that the $CoTiO_3$ nanoparticles have significant red shift to the visible region (400-700 nm) with $\lambda_{max}$ = 500 nm compared to pure $TiO_2$ powder ($\lambda_{max}$ = 320 nm). The new absorption peaks (absorption at 696, 604, 520, 478,456, 383, 336, 267, 238, 208 $c m ^{-1}$), which were not appeared in FT-Raman spectra of P-25, also confirm the formation of Ti-O-Co bonds at above 600 ${^{\circ}C}$ and just not the mixtures of titanium dioxide with cobalt oxides.

Keywords

References

  1. Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. J. Catal. 2001, 203, 82 https://doi.org/10.1006/jcat.2001.3316
  2. Arslan, L.; Balcioglu, L.A.; Bahnemann, D.W. Appl. Catal. B Environ. 2000, 26, 193 https://doi.org/10.1016/S0926-3373(00)00117-X
  3. Zhang, Q.; Gato, L.; Guo, J. Appl. Catal. B Environ. 2000, 26, 207 https://doi.org/10.1016/S0926-3373(00)00122-3
  4. Taguchi, J.; Okura, T. Appl. Catal. A Gen. 2000, 194/195, 789
  5. Takaca, T.; Furumi, Y.; Shinohara, K.; Tanaka, A.; Hara, M.; Kondo, J. N.; Domen, K. Chem. Mater. 1997, 9, 1063 https://doi.org/10.1021/cm960612b
  6. Fujihara, K.; Ohno, T.; Matsumura, M. J. Chem. Soc. Faraday Trans 1998, 94, 3705 https://doi.org/10.1039/a806398b
  7. Ohno, T.; Haga, D.; Fujihara, K.; Kaizaki, K.; Matsumura, M. J. Phys. Chem. B 1997, 101, 6415 https://doi.org/10.1021/jp971093i
  8. Sayama, K.; Arakawa, H. J. Phys. Chem. 1993, 97, 531 https://doi.org/10.1021/j100105a001
  9. Brik, Y.; Kacimi, M.; Ziyad, M.; Francois, B. V. J. Catal. 2001, 202, 118 https://doi.org/10.1006/jcat.2001.3262
  10. Stranick, M. A.; Houalla, M.; Hercules, D. M. J. Catal. 1987, 106, 362 https://doi.org/10.1016/0021-9517(87)90247-8
  11. Jezlorowski, H.; Knozinger, K.; Grange, P.; Gajardo, P. J. Phys. Chem. 1980, 84, 1825 https://doi.org/10.1021/j100451a017
  12. Koerts, T.; Vansanten, R. A. J. Chem. Soc. Chem. Comm. 1991, 1281
  13. Pareja, P.; Amariglio, A.; Belgued, M.; Amariglio, H. Catal. Today 1994, 21, 423 https://doi.org/10.1016/0920-5861(94)80164-9
  14. Noronha, F. B.; Perez, C. A.; Schmal, M.; Frety, R. Phys. Chem. Chem. Phys. 1999, 1, 2861 https://doi.org/10.1039/a809963d
  15. Okamoto, Y.; Nagata, K.; Adachi, T.; Inamura, K.; Takyu, T. J. Phys. Chem. 1991, 95, 310 https://doi.org/10.1021/j100154a057
  16. Verberckmoes, A.; Weckhuysen, B. M.; Schoonheydt, R. A. Micropor. Mesopor. Mater. 1998, 22, 165 https://doi.org/10.1016/S1387-1811(98)00091-2
  17. Yin, J. B.; Zhou, X. P. Chem. Mater. 2002, 14, 4633 https://doi.org/10.1021/cm020388s
  18. Komoda, Y.; Sakai, N.; Rao, T. N. Langmuir 1998, 14, 1081 https://doi.org/10.1021/la9706633
  19. Brik, Y.; Kacimi, M.; Francois, B. V.; Ziyad, M. J. Catal. 2002, 211, 47
  20. Dvoranova, D.; Brezova, V.; Mazur, M.; Malati, M. A. Appl. Catal. B Environ. 2002, 37, 91 https://doi.org/10.1016/S0926-3373(01)00335-6
  21. Tian, Z. R.; Tong, W.; Wang, J. Y.; Duan, N. G.; Krishnan, V. V.; Suib, S. L. Science 1997, 276, 926 https://doi.org/10.1126/science.276.5314.926
  22. Shen, Y. F.; Suib, S. L.; O'Young, C. L. J. Am. Chem. Soc. 1994, 116, 11020
  23. Cao, H.; Suib, S. L. J. Am. Chem. Soc. 1994, 116, 5334 https://doi.org/10.1021/ja00091a044
  24. Vob, M.; Borgmann, D.; Wedler, G. J. Catal. 2002, 212, 10 https://doi.org/10.1006/jcat.2002.3739
  25. Pouilleau, J.; Devilliers, D.; Groult, H.; Marcus, P. J. Mater. Sci. 1997, 32, 5645 https://doi.org/10.1023/A:1018645112465
  26. Verberckmoes, A.; Weckhuysen, B. M.; Schoonheydt, R. A. Micropor. Mesopor. Mater. 1998, 22, 165 https://doi.org/10.1016/S1387-1811(98)00091-2
  27. Carter, R. L. Molecular Symmetry and Group Theory; John Wiley & Sons, Inc.: 1998; Chapter 7, p 201
  28. Gotic, M.; Ivanda, M.; Popovic, S.; Music, S.; Sekulic, A.; Turkovic, A.; Furic, K. J. Raman Spectrosc. 1997, 28, 555 https://doi.org/10.1002/(SICI)1097-4555(199707)28:7<555::AID-JRS118>3.0.CO;2-S
  29. Choi, H. C.; Jung, Y. M.; Kim, S. B. Bull. Korean Chem. Soc. 2004, 25, 426 https://doi.org/10.1007/s11814-008-0072-8
  30. Baraton, M. I.; Busca, G.; Prieto, M. C.; Ricchiardi, G.; Escribano, V. S. J. Solid State Chem. 1994, 112, 9 https://doi.org/10.1006/jssc.1994.1256

Cited by

  1. A heterogeneous Co3O4–Bi2O3 composite catalyst for oxidative degradation of organic pollutants in the presence of peroxymonosulfate vol.2, pp.9, 2012, https://doi.org/10.1039/c2cy20080e
  2. Cobalt titanate-cobalt oxide composite thin films deposited from heterobimetallic precursor vol.26, pp.9, 2012, https://doi.org/10.1002/aoc.2893
  3. ) Thin Films and Monoliths vol.26, pp.20, 2014, https://doi.org/10.1021/cm503020y
  4. based catalytic oxidation of lignin model compound vol.5, pp.97, 2015, https://doi.org/10.1039/C5RA14227J
  5. perovskites via a modified Pechini method: impact of humidity on their phase composition vol.18, pp.6, 2016, https://doi.org/10.1039/C5CE02452H
  6. composite films from a heterobimetallic single source precursor for electrochemical sensing of dopamine vol.45, pp.25, 2016, https://doi.org/10.1039/C6DT01016D
  7. Complete photocatalytic mineralization of Nile blue on hetero-structured CoTiO3 nano-composite coated on glass in a sol–gel process using diethylene glycol as stabilizer: effect of charge separation and calcination temperature on activity vol.28, pp.8, 2017, https://doi.org/10.1007/s10854-016-6271-x
  8. The influence of copper-cobalt co-doping on optical and electrical properties of nanostructures TiO2 thin films prepared by sol-gel vol.82, pp.2, 2017, https://doi.org/10.1007/s10971-017-4337-8
  9. Degradation of Acid Azo Dyes Using Oxone Activated by Cobalt Titanate Perovskite vol.229, pp.1, 2018, https://doi.org/10.1007/s11270-017-3648-2
  10. blue pigments with low cobalt content applied in ceramic glaze vol.101, pp.6, 2018, https://doi.org/10.1111/jace.15422
  11. Photodecomposition of Concentrated Ammonia over Nanometer-sized TiO2, V-TiO2, and Pt/V-TiO2 Photocatalysts vol.28, pp.4, 2006, https://doi.org/10.5012/bkcs.2007.28.4.581
  12. Mapping ferromagnetism in Ti1−xCoxO2: Role of preparation temperature (200-900°C) and doping concentration (0.00015⩽x⩽0.1) vol.101, pp.9, 2006, https://doi.org/10.1063/1.2712020
  13. Ferromagnetism of Co-doped TiO2 films prepared by plasma enhanced chemical vapour deposition (PECVD) method vol.41, pp.19, 2006, https://doi.org/10.1088/0022-3727/41/19/195007
  14. XPS and XRD investigation of Co/Pd/TiO2 catalysts by different preparation methods vol.173, pp.2, 2006, https://doi.org/10.1016/j.elspec.2009.05.012
  15. Theoretical and experimental investigation of the influence of Co and Pd on the titanium dioxide phase transition by different calcined temperature vol.936, pp.1, 2009, https://doi.org/10.1016/j.molstruc.2009.07.025
  16. Formation and Structural Characterization of Cobalt Titanate Thin Films vol.57, pp.a5, 2006, https://doi.org/10.1002/jccs.201000142
  17. UV-Sensitized Generation of Phasepure Cobalt-Doped Anatase: CoxTi1−xO2−δ Nanocrystals with Ferromagnetic Behavior Using Nano-TiO2/cis-[Co vol.115, pp.10, 2006, https://doi.org/10.1021/jp1064227
  18. Pablo Picasso to Jasper Johns: a Raman study of cobalt‐based synthetic inorganic pigments vol.43, pp.11, 2006, https://doi.org/10.1002/jrs.4081
  19. Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries vol.61, pp.8, 2006, https://doi.org/10.1007/s40843-017-9225-5
  20. Effects of Annealing Temperature on Phase Transformation of CoTiO3 Nanoparticles and on their Structural, Optical, and Magnetic Properties vol.33, pp.2, 2006, https://doi.org/10.1007/s10948-019-05199-1
  21. Effects of Annealing Temperature on Phase Transformation of CoTiO3 Nanoparticles and on their Structural, Optical, and Magnetic Properties vol.33, pp.2, 2006, https://doi.org/10.1007/s10948-019-05199-1
  22. Crystalline Mesoporous Complex Oxides: Porosity‐Controlled Electromagnetic Response vol.30, pp.15, 2006, https://doi.org/10.1002/adfm.201909491
  23. Thermal Properties of Ultra- and Nanodispersed Core-Shell Structures of Ti(Mo)C and Ti(Mo)C-Co Obtained During Plasma-Chemical Synthesis by Plasma Recondensation Scheme vol.51, pp.3, 2006, https://doi.org/10.1007/s11663-020-01831-x
  24. Experimental and theoretical study on the structural, electronic, and optical properties within DFT+U, F xc kernel for LRC model, and BSE approaches. Part I: CoTiO3 and Co vol.390, pp.None, 2006, https://doi.org/10.1016/j.powtec.2021.05.070