References
- Marks, T. J. et al. Chem. Rev. 2001, 101, 953 https://doi.org/10.1021/cr000018s
- Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661 https://doi.org/10.1002/anie.198806611
- Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998 https://doi.org/10.1021/ja0570032
- Castro-Rodriguez, I.; Nakai, H.; Zakharov, L. N.; Rheingold, A. L.; Meyer, K. Science 2004, 305, 1757 https://doi.org/10.1126/science.1102602
- Chang, C. C.; Liao, M.-C.; Chang, T.-H.; Peng, S.-M.; Lee, G.-H. Angew. Chem., Int. Ed. 2005, 44, 7418 https://doi.org/10.1002/anie.200502400
- Santamaria, D.; Cano, J.; Royo, P.; Mosquera, M. E. G.; Cuenca, T.; Frutos, L. M.; Castano, O. Angew. Chem., Int. Ed. 2005, 44, 5828 https://doi.org/10.1002/anie.200500716
- Kong, L.-Y.; Zhang, Z.-H.; Zhu, H.-F.; Kawaguchi, H.; Okamura, T.; Doi, M.; Chu, Q.; Sun, W.-Y.; Ueyama, N. Angew. Chem., Int. Ed. 2005, 44, 4352 https://doi.org/10.1002/anie.200500587
- Hill, M.; Wendt, O. F. Organometallics 2005, 24, 5772 https://doi.org/10.1021/om050741e
- Inoue, S.; Koinuma, H.; Tsuruta, T. Makromol. Chem. 1969, 130, 210 https://doi.org/10.1002/macp.1969.021300112
- Coates, G. W.; Moore, D. R. Angew. Chem., Int. Ed. 2004, 43, 6618 https://doi.org/10.1002/anie.200460442
- Darensbourg, D. J.; Phelps, A. L.; Gall, N. L.; Jia, L. Acc. Chem. Res. 2004, 37, 836 https://doi.org/10.1021/ar030240u
- Darensbourg, D. J.; Mackiewicz, R. M. J. Am. Chem. Soc. 2005, 127, 14026 https://doi.org/10.1021/ja053544f
- Cohen, C. T.; Chu, T.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 10869 https://doi.org/10.1021/ja051744l
- Paddock, R. L.; Nguyen, S. T. Macromolecules 2005, 38, 6251 https://doi.org/10.1021/ma047551k
- Lee, B. Y.; Kwon, H. Y.; Lee, S. Y.; Na, S. J.; Han, S.-i.; Yun, H.; Lee, H.; Park, Y.-W. J. Am. Chem. Soc. 2005, 127, 3031 https://doi.org/10.1021/ja0435135
- Xiao, Y.; Wang, Z.; Ding, K. Macromolecules 2006, 39, 128 https://doi.org/10.1021/ma051859+
- Shaikh, A.-A.; Sivaram, S. Chem. Rev. 1996, 96, 951 https://doi.org/10.1021/cr950067i
- Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155 https://doi.org/10.1016/0010-8545(95)01232-X
- Sit, W. N.; Ng, S. M.; Kwong, K. Y.; Lau, C. P. J. Org. Chem. 2005, 70, 8583 https://doi.org/10.1021/jo051077e
- Barbarini, A.; Maggi, R.; Mazzacani, A.; Mori, G.; Sartori, G.; Sartrio, R. Tetrahedron Lett. 2003, 44, 2931 https://doi.org/10.1016/S0040-4039(03)00424-6
- Shen, Y. M.; Duah, W. L.; Shi, M. Adv. Synth. Catal. 2003, 345, 337 https://doi.org/10.1002/adsc.200390035
- Peng, J. J.; Deng, Y. Q. New J. Chem. 2001, 25, 639 https://doi.org/10.1039/b008923k
- Yang, H.; Deng, Y.; Shi, F. Chem. Commun. 2002, 274
- Kawanami, H.; Sakaki, A.; Matsui, K.; Ikushima, Y. Chem. Commun. 2003, 896
- Calo, W.; Nacci, A.; Monopoli, A.; Fanizzi, A. Org. Lett. 2002, 4, 2561 https://doi.org/10.1021/ol026189w
- Kawanami, H.; Ikushima, Y. Chem. Commun. 2000, 2089
- Jiang, J.-L.; Gao, F.; Hua, R.; Qiu, X. J. Org. Chem. 2005, 70, 381 https://doi.org/10.1021/jo0485785
- Yasuda, H.; He, L. N.; Sakakura, T. J. Catal. 2002, 209, 547 https://doi.org/10.1006/jcat.2002.3662
- Kim, H. S.; Kim, J. J.; Lee, B. G.; Jung, O. S.; Jang, H. G.; Kang, S. O. Angew. Chem., Int. Ed. 2000, 39, 4096 https://doi.org/10.1002/1521-3773(20001117)39:22<4096::AID-ANIE4096>3.0.CO;2-9
- Kim, H. S.; Kim, J. J.; Lee, S. D.; Lah, M. S.; Moon, D.; Jang, H. G. Chem. Eur. J. 2003, 9, 678 https://doi.org/10.1002/chem.200390076
- Shen, Y.-M.; Duan, W.-L.; Shi, M. J. Org. Chem. 2003, 68, 1559 https://doi.org/10.1021/jo020191j
- Mori, K.; Mitani, Y.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem. Commun. 2005, 3331
- Ji, D.; Lu, X.; He, R. Appl. Catal. A: Gen. 2000, 203, 329 https://doi.org/10.1016/S0926-860X(00)00500-7
- Takeda, N.; Inoue, S. Bull. Chem. Soc. Jpn. 1978, 51, 3564 https://doi.org/10.1246/bcsj.51.3564
- Aida, T.; Inoue, S. J. Am. Chem. Soc. 1983, 105, 1304 https://doi.org/10.1021/ja00343a038
- Paddock, R. L.; Hiyama, Y.; Mckay, J. M.; Nguyen, S. T. Tetrahedron Lett. 2004, 45, 2023 https://doi.org/10.1016/j.tetlet.2003.10.101
- Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498 https://doi.org/10.1021/ja0164677
- Kisch, H.; Millini, R.; Wang, I. Chem. Ber. 1986, 119, 1090 https://doi.org/10.1002/cber.19861190329
- Sun, J.; Fujita, S.-i.; Zhao, F.; Arai, M. Green Chem. 2004, 6, 613 https://doi.org/10.1039/b413229g
- Li, F.; Xiao, L.; Xia, C.; Hu, B. Tetrahedron Lett. 2004, 45, 8307 https://doi.org/10.1016/j.tetlet.2004.09.074
- Kim, Y. J.; Varma, R. S. J. Org. Chem. 2005, 70, 7882 https://doi.org/10.1021/jo050699x
- Mori, K.; Mitani, Y.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem. Commun. 2005, 3331
- Lu, X.-B.; Shi, L.; Wang, Y.-M.; Zhang, R.; Zhang, Y.-J.; Peng, X.-J.; Zhang, Z.-C.; Li, B. J. Am. Chem. Soc. 2006, 128, 1664 https://doi.org/10.1021/ja056383o
- Lu, X.-B.; Wang, Y. Angew. Chem., Int. Ed. 2004, 43, 3574 https://doi.org/10.1002/anie.200453998
Cited by
- Efficient Method for Varying the Anions in Quaternary Onium Halides vol.2012, pp.19, 2012, https://doi.org/10.1002/ejoc.201200370
- Vanadium Catalyzed Synthesis of Cyclic Organic Carbonates vol.4, pp.8, 2012, https://doi.org/10.1002/cctc.201100398
- A Powerful Aluminum Catalyst for the Synthesis of Highly Functional Organic Carbonates vol.135, pp.4, 2013, https://doi.org/10.1021/ja311053h
- ] Catalyst for the Coupling of Epoxides with Carbon Dioxide vol.2013, pp.26, 2013, https://doi.org/10.1002/ejic.201300634
- with epoxides vol.131, pp.21, 2014, https://doi.org/10.1002/app.41141
- Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings vol.17, pp.4, 2015, https://doi.org/10.1039/C4GC01719F
- to cyclic carbonate catalyzed by VO(IV) porphyrin vol.29, pp.4, 2015, https://doi.org/10.1002/aoc.3278
- vol.38, pp.2, 2017, https://doi.org/10.1002/bkcs.11068
- Conversion of Carbon Dioxide into Several Potential Chemical Commodities Following Different Pathways - A Review vol.764, pp.1662-9752, 2013, https://doi.org/10.4028/www.scientific.net/MSF.764.1
- Trapping as Carbamato Ligands vol.11, pp.16, 2018, https://doi.org/10.1002/cssc.201801065
- Coupling Reaction of CO2 with Epoxides by Binary Catalytic System of Lewis Acids and Onium Salts. vol.38, pp.1, 2007, https://doi.org/10.1002/chin.200701118
- Polymer-supported Zinc Tetrahalide Catalysts for the Coupling Reactions of CO2 and Epoxides vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2025
- Lithium Chloride-Imidazolium Chloride Melts for the Coupling Reactions of Propylene Oxide and CO2 vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.148
- A facile catalytic synthesis of trimethylene carbonate from trimethylene oxide and carbon dioxide vol.12, pp.8, 2006, https://doi.org/10.1039/c0gc00136h
- Synthesis of ethylene carbonate from cyclocondensation of ethylene glycol and urea over ZnO•Cr2O3 catalyst system controlled by co-precipitation method vol.3, pp.2, 2012, https://doi.org/10.5155/eurjchem.3.2.235-240.460
- Efficient Cycloaddition Reaction of Carbon Dioxide with Epoxide by Rhodamine Based Catalyst Under 1 atm Pressure vol.33, pp.6, 2006, https://doi.org/10.5012/bkcs.2012.33.6.1945
- Coupling Reactions of Carbon Dioxide with Epoxides Catalyzed by Vanadium Aminophenolate Complexes vol.10, pp.6, 2017, https://doi.org/10.1002/cssc.201601548
- Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2 vol.375, pp.3, 2017, https://doi.org/10.1007/s41061-017-0136-5
- Room temperature CO2 fixation via cyclic carbonate synthesis over vanadium-MOF catalysts vol.36, pp.5, 2006, https://doi.org/10.1007/s11814-019-0255-5
- Naphthalene Based Amide‐Imine Derivative and its Dinuclear Vanadium Complex: Structures, Atmospheric CO 2 Fixation and Theoretical Support vol.4, pp.35, 2006, https://doi.org/10.1002/slct.201901327
- Metal β-diketonate complexes as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates under mild conditions vol.48, pp.42, 2006, https://doi.org/10.1039/c9dt03584b
- An efficient CO2 fixation reaction with epoxides catalysed by in situ formed blue vanadium catalyst from dioxovanadium(+5) complex: moisture enhanced and atmospheric oxygen retarded catalyt vol.44, pp.6, 2006, https://doi.org/10.1039/c9nj04606b