DOI QR코드

DOI QR Code

Coupling Reaction of CO2 with Epoxides by Binary Catalytic System of Lewis Acids and Onium Salts

  • Bok, Taekki (Department of Molecular Science and Technology, Ajou University) ;
  • Noh, Eun Kyung (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Bun Yeoul (Department of Molecular Science and Technology, Ajou University)
  • Published : 2006.08.20

Abstract

Various off-the-shelf Lewis acids in conjunction with various onium salts are screened for coupling reaction of $CO_2$ with epoxides. Among the tested ones, $VCl_3/n-Bu_4NOAc$, $VCl_3/(n-Bu_4NCl$ or PPNCl), $FeCl_3/ n-Bu_4NOAc$, and $FeCl_3/ n-Bu_4NOAc$are proved to be highly active. Propylene oxide, epichlorohydrin, styrene oxide, and cyclohexene oxide can be converted over 90% yields to the corresponding cyclic carbonates without the use of organic solvents under mild conditions by 0.1-1.0 mol% catalyst charge.

Keywords

References

  1. Marks, T. J. et al. Chem. Rev. 2001, 101, 953 https://doi.org/10.1021/cr000018s
  2. Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661 https://doi.org/10.1002/anie.198806611
  3. Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998 https://doi.org/10.1021/ja0570032
  4. Castro-Rodriguez, I.; Nakai, H.; Zakharov, L. N.; Rheingold, A. L.; Meyer, K. Science 2004, 305, 1757 https://doi.org/10.1126/science.1102602
  5. Chang, C. C.; Liao, M.-C.; Chang, T.-H.; Peng, S.-M.; Lee, G.-H. Angew. Chem., Int. Ed. 2005, 44, 7418 https://doi.org/10.1002/anie.200502400
  6. Santamaria, D.; Cano, J.; Royo, P.; Mosquera, M. E. G.; Cuenca, T.; Frutos, L. M.; Castano, O. Angew. Chem., Int. Ed. 2005, 44, 5828 https://doi.org/10.1002/anie.200500716
  7. Kong, L.-Y.; Zhang, Z.-H.; Zhu, H.-F.; Kawaguchi, H.; Okamura, T.; Doi, M.; Chu, Q.; Sun, W.-Y.; Ueyama, N. Angew. Chem., Int. Ed. 2005, 44, 4352 https://doi.org/10.1002/anie.200500587
  8. Hill, M.; Wendt, O. F. Organometallics 2005, 24, 5772 https://doi.org/10.1021/om050741e
  9. Inoue, S.; Koinuma, H.; Tsuruta, T. Makromol. Chem. 1969, 130, 210 https://doi.org/10.1002/macp.1969.021300112
  10. Coates, G. W.; Moore, D. R. Angew. Chem., Int. Ed. 2004, 43, 6618 https://doi.org/10.1002/anie.200460442
  11. Darensbourg, D. J.; Phelps, A. L.; Gall, N. L.; Jia, L. Acc. Chem. Res. 2004, 37, 836 https://doi.org/10.1021/ar030240u
  12. Darensbourg, D. J.; Mackiewicz, R. M. J. Am. Chem. Soc. 2005, 127, 14026 https://doi.org/10.1021/ja053544f
  13. Cohen, C. T.; Chu, T.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 10869 https://doi.org/10.1021/ja051744l
  14. Paddock, R. L.; Nguyen, S. T. Macromolecules 2005, 38, 6251 https://doi.org/10.1021/ma047551k
  15. Lee, B. Y.; Kwon, H. Y.; Lee, S. Y.; Na, S. J.; Han, S.-i.; Yun, H.; Lee, H.; Park, Y.-W. J. Am. Chem. Soc. 2005, 127, 3031 https://doi.org/10.1021/ja0435135
  16. Xiao, Y.; Wang, Z.; Ding, K. Macromolecules 2006, 39, 128 https://doi.org/10.1021/ma051859+
  17. Shaikh, A.-A.; Sivaram, S. Chem. Rev. 1996, 96, 951 https://doi.org/10.1021/cr950067i
  18. Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155 https://doi.org/10.1016/0010-8545(95)01232-X
  19. Sit, W. N.; Ng, S. M.; Kwong, K. Y.; Lau, C. P. J. Org. Chem. 2005, 70, 8583 https://doi.org/10.1021/jo051077e
  20. Barbarini, A.; Maggi, R.; Mazzacani, A.; Mori, G.; Sartori, G.; Sartrio, R. Tetrahedron Lett. 2003, 44, 2931 https://doi.org/10.1016/S0040-4039(03)00424-6
  21. Shen, Y. M.; Duah, W. L.; Shi, M. Adv. Synth. Catal. 2003, 345, 337 https://doi.org/10.1002/adsc.200390035
  22. Peng, J. J.; Deng, Y. Q. New J. Chem. 2001, 25, 639 https://doi.org/10.1039/b008923k
  23. Yang, H.; Deng, Y.; Shi, F. Chem. Commun. 2002, 274
  24. Kawanami, H.; Sakaki, A.; Matsui, K.; Ikushima, Y. Chem. Commun. 2003, 896
  25. Calo, W.; Nacci, A.; Monopoli, A.; Fanizzi, A. Org. Lett. 2002, 4, 2561 https://doi.org/10.1021/ol026189w
  26. Kawanami, H.; Ikushima, Y. Chem. Commun. 2000, 2089
  27. Jiang, J.-L.; Gao, F.; Hua, R.; Qiu, X. J. Org. Chem. 2005, 70, 381 https://doi.org/10.1021/jo0485785
  28. Yasuda, H.; He, L. N.; Sakakura, T. J. Catal. 2002, 209, 547 https://doi.org/10.1006/jcat.2002.3662
  29. Kim, H. S.; Kim, J. J.; Lee, B. G.; Jung, O. S.; Jang, H. G.; Kang, S. O. Angew. Chem., Int. Ed. 2000, 39, 4096 https://doi.org/10.1002/1521-3773(20001117)39:22<4096::AID-ANIE4096>3.0.CO;2-9
  30. Kim, H. S.; Kim, J. J.; Lee, S. D.; Lah, M. S.; Moon, D.; Jang, H. G. Chem. Eur. J. 2003, 9, 678 https://doi.org/10.1002/chem.200390076
  31. Shen, Y.-M.; Duan, W.-L.; Shi, M. J. Org. Chem. 2003, 68, 1559 https://doi.org/10.1021/jo020191j
  32. Mori, K.; Mitani, Y.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem. Commun. 2005, 3331
  33. Ji, D.; Lu, X.; He, R. Appl. Catal. A: Gen. 2000, 203, 329 https://doi.org/10.1016/S0926-860X(00)00500-7
  34. Takeda, N.; Inoue, S. Bull. Chem. Soc. Jpn. 1978, 51, 3564 https://doi.org/10.1246/bcsj.51.3564
  35. Aida, T.; Inoue, S. J. Am. Chem. Soc. 1983, 105, 1304 https://doi.org/10.1021/ja00343a038
  36. Paddock, R. L.; Hiyama, Y.; Mckay, J. M.; Nguyen, S. T. Tetrahedron Lett. 2004, 45, 2023 https://doi.org/10.1016/j.tetlet.2003.10.101
  37. Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498 https://doi.org/10.1021/ja0164677
  38. Kisch, H.; Millini, R.; Wang, I. Chem. Ber. 1986, 119, 1090 https://doi.org/10.1002/cber.19861190329
  39. Sun, J.; Fujita, S.-i.; Zhao, F.; Arai, M. Green Chem. 2004, 6, 613 https://doi.org/10.1039/b413229g
  40. Li, F.; Xiao, L.; Xia, C.; Hu, B. Tetrahedron Lett. 2004, 45, 8307 https://doi.org/10.1016/j.tetlet.2004.09.074
  41. Kim, Y. J.; Varma, R. S. J. Org. Chem. 2005, 70, 7882 https://doi.org/10.1021/jo050699x
  42. Mori, K.; Mitani, Y.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem. Commun. 2005, 3331
  43. Lu, X.-B.; Shi, L.; Wang, Y.-M.; Zhang, R.; Zhang, Y.-J.; Peng, X.-J.; Zhang, Z.-C.; Li, B. J. Am. Chem. Soc. 2006, 128, 1664 https://doi.org/10.1021/ja056383o
  44. Lu, X.-B.; Wang, Y. Angew. Chem., Int. Ed. 2004, 43, 3574 https://doi.org/10.1002/anie.200453998

Cited by

  1. Efficient Method for Varying the Anions in Quaternary Onium Halides vol.2012, pp.19, 2012, https://doi.org/10.1002/ejoc.201200370
  2. Vanadium Catalyzed Synthesis of Cyclic Organic Carbonates vol.4, pp.8, 2012, https://doi.org/10.1002/cctc.201100398
  3. A Powerful Aluminum Catalyst for the Synthesis of Highly Functional Organic Carbonates vol.135, pp.4, 2013, https://doi.org/10.1021/ja311053h
  4. ] Catalyst for the Coupling of Epoxides with Carbon Dioxide vol.2013, pp.26, 2013, https://doi.org/10.1002/ejic.201300634
  5. with epoxides vol.131, pp.21, 2014, https://doi.org/10.1002/app.41141
  6. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings vol.17, pp.4, 2015, https://doi.org/10.1039/C4GC01719F
  7. to cyclic carbonate catalyzed by VO(IV) porphyrin vol.29, pp.4, 2015, https://doi.org/10.1002/aoc.3278
  8. vol.38, pp.2, 2017, https://doi.org/10.1002/bkcs.11068
  9. Conversion of Carbon Dioxide into Several Potential Chemical Commodities Following Different Pathways - A Review vol.764, pp.1662-9752, 2013, https://doi.org/10.4028/www.scientific.net/MSF.764.1
  10. Trapping as Carbamato Ligands vol.11, pp.16, 2018, https://doi.org/10.1002/cssc.201801065
  11. Coupling Reaction of CO2 with Epoxides by Binary Catalytic System of Lewis Acids and Onium Salts. vol.38, pp.1, 2007, https://doi.org/10.1002/chin.200701118
  12. Polymer-supported Zinc Tetrahalide Catalysts for the Coupling Reactions of CO2 and Epoxides vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2025
  13. Lithium Chloride-Imidazolium Chloride Melts for the Coupling Reactions of Propylene Oxide and CO2 vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.148
  14. A facile catalytic synthesis of trimethylene carbonate from trimethylene oxide and carbon dioxide vol.12, pp.8, 2006, https://doi.org/10.1039/c0gc00136h
  15. Synthesis of ethylene carbonate from cyclocondensation of ethylene glycol and urea over ZnO•Cr2O3 catalyst system controlled by co-precipitation method vol.3, pp.2, 2012, https://doi.org/10.5155/eurjchem.3.2.235-240.460
  16. Efficient Cycloaddition Reaction of Carbon Dioxide with Epoxide by Rhodamine Based Catalyst Under 1 atm Pressure vol.33, pp.6, 2006, https://doi.org/10.5012/bkcs.2012.33.6.1945
  17. Coupling Reactions of Carbon Dioxide with Epoxides Catalyzed by Vanadium Aminophenolate Complexes vol.10, pp.6, 2017, https://doi.org/10.1002/cssc.201601548
  18. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2 vol.375, pp.3, 2017, https://doi.org/10.1007/s41061-017-0136-5
  19. Room temperature CO2 fixation via cyclic carbonate synthesis over vanadium-MOF catalysts vol.36, pp.5, 2006, https://doi.org/10.1007/s11814-019-0255-5
  20. Naphthalene Based Amide‐Imine Derivative and its Dinuclear Vanadium Complex: Structures, Atmospheric CO 2 Fixation and Theoretical Support vol.4, pp.35, 2006, https://doi.org/10.1002/slct.201901327
  21. Metal β-diketonate complexes as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates under mild conditions vol.48, pp.42, 2006, https://doi.org/10.1039/c9dt03584b
  22. An efficient CO2 fixation reaction with epoxides catalysed by in situ formed blue vanadium catalyst from dioxovanadium(+5) complex: moisture enhanced and atmospheric oxygen retarded catalyt vol.44, pp.6, 2006, https://doi.org/10.1039/c9nj04606b