DOI QR코드

DOI QR Code

In vitro Evaluation of New Acetylcholinesterase Reactivators as Casual Antidotes against Tabun and Cyclosarin

  • Kuca, Kamil (Department of Toxicology, Faculty of Military Health Sciences) ;
  • Jun, Daniel (Department of Toxicology, Faculty of Military Health Sciences) ;
  • Kim, Tae-Hyuk (Medicinal Science Division, Korea Research Institute of Chemical Technology) ;
  • Cabal, Jiri (Department of Toxicology, Faculty of Military Health Sciences) ;
  • Jung, Young-Sik (Medicinal Science Division, Korea Research Institute of Chemical Technology)
  • Published : 2006.03.20

Abstract

Nerve agents (sarin, tabun, soman and VX) are class of military important substances able to cause many severe intoxications during few minutes. Currently, the threat of misuse of these agents is daily discussed. Unfortunately, there is no single antidote able to treat intoxication caused by all of these agents. Owing to this fact, new generation of antidotes, especially acetylcholinesterase (AChE; EC 3.1.1.7) reactivators, is still developed. In this study, we have tested four newly developed AChE reactivators: 1-(4-hydroxyiminomethylpyridinium)- 5-(4-carbamoylpyridinium)-3-oxa-pentane dibromide (1), 1-(3-hydroxyiminomethylpyridinium)-5-(4-carbamoylpyridinium)-3-oxa-pentane dibromide (2), 1,5-bis(2-hydroxyiminomethylpyridinium)-3-oxa-pentane dichloride (3) and 1,5-bis(4-hydroxyiminomethylpyridinium)-3-oxa-pentane dibromide (4) for their potency to reactivate in vitro tabun and cyclosarin-inhibited AChE. Their reactivation efficacy was compared with currently the most promising oxime HI-6 (1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-2-oxa-propane dichloride). According to obtained results, two AChE reactivators 1 and 4 were able to reactivate tabun-inhibited AChE. On the contrary, there was no better AChE reactivator than HI-6 able to reactivate cyclosarin-inhibited AChE.

Keywords

References

  1. Patocka, J.; Kuca, K.; Jun, D. Acta Medica (Hradec Kralove) 2004, 47(4), 215-230
  2. Marrs, T. C. Pharmacol. Ther. 1993, 58, 51-66 https://doi.org/10.1016/0163-7258(93)90066-M
  3. Taylor, P. Anticholinergic Agents in The Pharmacological Basis of Therapeutics; Hardman, J. G.; Limbird, L. E., Eds.; McGraw Hill: New York, 1996; pp 161-176
  4. Bajgar, J. Adv. Clin. Chem. 2004, 38, 151-216 https://doi.org/10.1016/S0065-2423(04)38006-6
  5. Bajgar, J. J. Med. Chem. Def. 2004, 1, 1-16
  6. Cabal, J.; Kuca, K.; Sevelova, L.; Dohnal, V. Acta Medica (Hradec Kralove) 2004, 47(2), 115-118
  7. Kassa, J. J. Toxicol. Clin. Toxicol. 2002, 40, 803-816 https://doi.org/10.1081/CLT-120015840
  8. Yang, G. Y.; Yoon, J. H.; Seong, C. M.; Park, N. S.; Jung, Y. S. Bull. Korean Chem. Soc. 2003, 24, 1368-70 https://doi.org/10.5012/bkcs.2003.24.9.1368
  9. Pang, Y. P.; Kollmeyer, T. M.; Hong, F.; Lee, J. C.; Hammond, P. I.; Haugabouk, S. P.; Brimijoin, S. Chem. Biol. 2003, 10, 491-502 https://doi.org/10.1016/S1074-5521(03)00126-1
  10. Kuca, K.; Cabal, J.; Patocka, J.; Kassa, J. Lett. Org. Chem. 2004, 1, 84 https://doi.org/10.2174/1570178043488761
  11. Kim, T. H.; Kuca, K.; Jun, D.; Jung, Y. S. Bioorg. Med. Chem. Lett. 2005, 15, 2914-2917 https://doi.org/10.1016/j.bmcl.2005.03.060
  12. Chennamaneni, S. R.; Vobalaboina, V.; Garlapati, A. Bioorg. Med. Chem. Lett. 2005, 15, 3076-3080 https://doi.org/10.1016/j.bmcl.2005.04.026
  13. Dohnal, V.; Kuca, K.; Jun, D. J. Appl. Biomed. 2005, 3, 139-145
  14. Kuca, K.; Kassa, J. J. Enzyme Inhib. Med. Chem. 2003, 18, 529-535 https://doi.org/10.1080/14756360310001605552
  15. Sevelova, L.; Bajgar, J.; Saxena, A.; Doctor, B. P. Inhal. Toxicol. 2004, 16, 531-536 https://doi.org/10.1080/08958370490442511
  16. Sevelova, L.; Kuca, K.; Krejcova, G.; Vachek, J. J. Appl. Biomed. 2004, 2(3), 163-167
  17. Sevelova, L.; Kuca, K.; Krejcova, G. Toxicology 2005, 207, 1-6 https://doi.org/10.1016/j.tox.2004.07.019
  18. Broomfield, C. A.; Maxwell, D. M.; Solana, R. P.; Castro, C. A.; Finger, A. V.; Lenz, D. E. J. Pharmacol. Exp. Ther. 1991, 259, 633-638
  19. Kuca, K.; Kassa, J. Hum. Exp. Toxicol. 2004, 23(4), 167-171 https://doi.org/10.1191/0960327104ht434oa
  20. Kuca, K.; Kassa, J. Veterinary Human Toxicol. 2004, 46, 15-18
  21. Kassa, J.; Cabal, J. Toxicology 1999, 132, 111-118 https://doi.org/10.1016/S0300-483X(98)00146-2
  22. Kassa, J.; Cabal, J. Hum. Exp. Toxicol. 1999, 18, 560-565 https://doi.org/10.1191/096032799678845106
  23. Kassa, J.; Cabal, J. Pharmacol. Toxicol. 1999, 84, 41 https://doi.org/10.1111/j.1600-0773.1999.tb02109.x
  24. Krejcova-Kunesova, G.; Bartosova, L.; Kuca, K. Toxicology 2005
  25. Kuca, K.; Patocka, J.; Cabal, J. J. Appl. Biomed. 2003, 1, 207-211
  26. Patocka, J.; Cabal, J.; Kuca, K.; Jun, D. J. Appl. Biomed. 2005, 3(2), 91-99
  27. Worek, F.; Kirchner, T.; Backer, M.; Szinicz, L. Arch. Toxicol. 1996, 70, 497-503 https://doi.org/10.1007/s002040050304

Cited by

  1. Effect of Several New and Currently Available Oxime Cholinesterase Reactivators on Tabun-intoxicated Rats vol.9, pp.11, 2008, https://doi.org/10.3390/ijms9112243
  2. Reactivation of Human Brain Homogenate Cholinesterases Inhibited by Tabun using Newly Developed Oximes K117 and K127 vol.105, pp.3, 2009, https://doi.org/10.1111/j.1742-7843.2009.00421.x
  3. Potency of Several Structurally Different Acetylcholinesterase Reactivators to Reactivate House Fly and Bovine Acetylcholinesterases Inhibited by Paraoxon and DFP vol.27, pp.9, 2006, https://doi.org/10.5012/bkcs.2006.27.9.1401
  4. A Comparison of the Therapeutic and Reactivating Efficacy of Newly Developed Oximes (K117, K127) and Currently Available Oximes (Obidoxime, Trimedoxime, HI-6) in Tabun-Poisoned Rats and Mice vol.31, pp.3, 2006, https://doi.org/10.1080/01480540802171258