DOI QR코드

DOI QR Code

Low Molecular Weight Polyethylenimine-Mitochondrial Leader Peptide Conjugate for DNA Delivery to Mitochondria

  • Choi, Joon-Sig (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Choi, Min-Ji (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Go, Gyeong-Su (Department of Internal Medicine, Mitochondrial Research Group, College of Medicine, Inje University) ;
  • Rhee, Byoung-Doo (Department of Internal Medicine, Mitochondrial Research Group, College of Medicine, Inje University) ;
  • KimPak, Young-Mi (Asan Institute for Life Science, University of Ulsan) ;
  • Bang, In-Seok (MyGene Bioscience Institute) ;
  • Lee, Min-Hyung (Department of Bioengineering, College of Engineering, Hanyang University)
  • Published : 2006.09.20

Abstract

It has been found that a number of diseases are associated with mutations in the mitochondrial DNA. Therapeutic gene delivery to mitochondria has been suggested as a clinical option for these diseases. In this study, we developed a gene carrier to mitochondria by the conjugation of mitochondrial leader peptide (LP) to polyethylenimine (PEI). Mitochondrial LP conjugated PEI (PEI-LP) was synthesized with low molecular weight PEI (2,000 Da, PEI2K). Gel retardation assay showed that PEI2K-LP formed complexes at a 1.0/1 weight ratio. In addition, PEI2K-LP protected DNA from the enzymatic degradation for at least 60 min, while naked DNA was completely degraded within 20 min. PEI2K-LP was compared with LP conjugated high molecular weight PEI (25,000 Da, PEI25K) in terms of toxicity and delivery efficiency. MTT assay showed that PEI2K-LP had much lower cytotoxicity than PEI25K-LP to 293 cells. In addition, cell-free DNA delivery assay showed that PEI2K-LP delivered more DNA to mitochondria at a 1.8/1 weight ratio than naked DNA or PEI. This result suggests that PEI2K-LP may be useful for the development of mitochondrial gene therapy system with lower cytotoxicity.

Keywords

References

  1. Andersson, S. G.; Zomorodipour, A.; Andersson, J. O.; Sicheritz-Ponten, T.; Alsmark, U. C.; Podowski, R. M.; Naslund, A. K.; Eriksson, A. S.; Winkler, H. H.; Kurland, C. G. Nature 1998, 396, 133 https://doi.org/10.1038/24094
  2. Rabilloud, T.; Kieffer, S.; Procaccio, V.; Louwagie, M.; Courchesne, P. L.; Patterson, S. D.; Martinez, P.; Garin, J.; Lunardi, J. Electrophoresis 1998, 19, 1006 https://doi.org/10.1002/elps.1150190616
  3. Lopez, M. F.; Kristal, B. S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A. I.; Bogdanova, A.; Robinson, M. Electrophoresis 2000, 21, 3427 https://doi.org/10.1002/1522-2683(20001001)21:16<3427::AID-ELPS3427>3.0.CO;2-L
  4. Kumar, A.; Agarwal, S.; Heyman, J. A.; Matson, S.; Heidtman, M.; Piccirillo, S.; Umansky, L.; Drawid, A.; Jansen, R.; Liu, Y.; Cheung, K. H.; Miller, P.; Gerstein, M.; Roeder, G. S.; Snyder, M., Genes Dev. 2002, 16, 707 https://doi.org/10.1101/gad.970902
  5. Wallace, D. C. Gene 2005, 354, 169 https://doi.org/10.1016/j.gene.2005.05.001
  6. Shoffner, J. M.; Wallace, D. C. Heart Dis. Stroke 1992, 1, 235
  7. Pulkes, T.; Hanna, M. G. Adv. Drug Deliv. Rev. 2001, 49, 27 https://doi.org/10.1016/S0169-409X(01)00124-7
  8. Wallace, D. C.; Shoffner, J. M.; Trounce, I.; Brown, M. D.; Ballinger, S. W.; Corral-Debrinski, M.; Horton, T.; Jun, A. S.; Lott, M. T. Biochim. Biophys. Acta 1995, 1271, 141 https://doi.org/10.1016/0925-4439(95)00021-U
  9. Wallace, D. C.; Lott, M. T.; Shoffner, J. M.; Brown, M. D. J. Inherit. Metab. Dis. 1992, 15, 472 https://doi.org/10.1007/BF01799605
  10. Holt, I. J.; Harding, A. E.; Petty, R. K.; Morgan-Hughes, J. A. Am. J. Hum. Genet. 1990, 46, 428
  11. Holt, I. J.; Harding, A. E.; Cooper, J. M.; Schapira, A. H.; Toscano, A.; Clark, J. B.; Morgan-Hughes, J. A. Ann. Neurol. 1989, 26, 699 https://doi.org/10.1002/ana.410260603
  12. Ballinger, S. W.; Shoffner, J. M.; Gebhart, S.; Koontz, D. A.; Wallace, D. C. Nat. Genet. 1994, 7, 458 https://doi.org/10.1038/ng0894-458
  13. Ballinger, S. W.; Shoffner, J. M.; Hedaya, E. V.; Trounce, I.; Polak, M. A.; Koontz, D. A.; Wallace, D. C. Nat. Genet. 1992, 1, 11 https://doi.org/10.1038/ng0492-11
  14. Brown, M. D.; Hosseini, S.; Steiner, I.; Wallace, D. C.; Korn- Lubetzki, I. Mov. Disord. 2004, 19, 235 https://doi.org/10.1002/mds.10646
  15. Seibel, P.; Trappe, J.; Villani, G.; Klopstock, T.; Papa, S.; Reichmann, H. Nucleic Acids Res. 1995, 23, 10 https://doi.org/10.1093/nar/23.1.10
  16. D'Souza, G. G.; Boddapati, S. V.; Weissig, V. Mitochondrion 2005, 5, 352 https://doi.org/10.1016/j.mito.2005.07.001
  17. D'Souza, G. G.; Rammohan, R.; Cheng, S. M.; Torchilin, V. P.; Weissig, V. J. Control. Release 2003, 92, 189 https://doi.org/10.1016/S0168-3659(03)00297-9
  18. Weissig, V.; Torchilin, V. P. Adv. Drug Deliv. Rev. 2001, 49, 127 https://doi.org/10.1016/S0169-409X(01)00131-4
  19. Weissig, V.; D'Souza, G. G.; Torchilin, V. P. J. Control. Release 2001, 75, 401 https://doi.org/10.1016/S0168-3659(01)00392-3
  20. Han, S.; Mahato, R. I.; Sung, Y. K.; Kim, S. W. Mol. Ther. 2000, 2, 302 https://doi.org/10.1006/mthe.2000.0142
  21. Lee, M.; Kim, S. W. Pharm. News 2002, 9, 407
  22. Lee, M.; Kim, S. W. Pharm. Res. 2005, 22, 1 https://doi.org/10.1007/s11095-004-9003-5
  23. Chan, C. K.; Jans, D. A. Hum. Gene Ther. 1999, 10, 1695 https://doi.org/10.1089/10430349950017699
  24. Cartier, R.; Reszka, R. Gene Ther. 2002, 9, 157 https://doi.org/10.1038/sj.gt.3301635
  25. Lee, M.; Rentz, J.; Han, S. O.; Bull, D. A.; Kim, S. W. Gene Ther. 2003, 10, 585 https://doi.org/10.1038/sj.gt.3301938
  26. Lee, M.; Choi, J. S.; Choi, M. J.; Pak, Y. K.; Rhee, B. D.; Ko, K. S. J. Drug Target 2006, in press
  27. Lee, M.; Han, S. O.; Ko, K. S.; Koh, J. J.; Park, J. S.; Yoon, J. W.; Kim, S. W. Mol. Ther. 2001, 4, 339 https://doi.org/10.1006/mthe.2001.0458
  28. Barry, M. E.; Pinto-Gonzalez, D.; Orson, F. M.; McKenzie, G. J.; Petry, G. R.; Barry, M. A. Hum. Gene Ther. 1999, 10, 2461 https://doi.org/10.1089/10430349950016816
  29. Kang, H. C.; Lee, M.; Bae, Y. H. Crit. Rev. Eukaryot. Gene Expr. 2005, 15, 317 https://doi.org/10.1615/CritRevEukarGeneExpr.v15.i4.30
  30. Godbey, W. T.; Wu, K. K.; Mikos, A. G. J. Biomed. Mater. Res. 1999, 45, 268 https://doi.org/10.1002/(SICI)1097-4636(19990605)45:3<268::AID-JBM15>3.0.CO;2-Q
  31. Fischer, D.; Bieber, T.; Li, Y.; Elsasser, H. P.; Kissel, T. Pharm. Res. 1999, 16, 1273 https://doi.org/10.1023/A:1014861900478
  32. Koh, J. J.; Ko, K. S.; Lee, M.; Han, S.; Park, J. S.; Kim, S. W. Gene Ther. 2000, 7, 2099 https://doi.org/10.1038/sj.gt.3301334
  33. Choi, J. S.; Lee, M. Bull. Korean Chem. Soc. 2005, 26, 1209 https://doi.org/10.5012/bkcs.2005.26.8.1209
  34. Kim, T.; Seo, H. J.; Baek, J.; Park, J. H.; Park, J. S. Bull. Korean Chem. Soc. 2005, 26, 175 https://doi.org/10.1007/s11814-009-0029-6

Cited by

  1. Interaction of Poly(ethylenimine)–DNA Polyplexes with Mitochondria: Implications for a Mechanism of Cytotoxicity vol.8, pp.5, 2011, https://doi.org/10.1021/mp200078n
  2. Synthesis of Novel Poly(amido ethylenimine) (PAMEIM) Dendrimer and Its Self-assembly with Plasmid DNA vol.27, pp.11, 2006, https://doi.org/10.5012/bkcs.2006.27.11.1894
  3. Apoptosis Induced by Polyethylenimine/DNA Complex in Polymer Mediated Gene Delivery vol.28, pp.1, 2006, https://doi.org/10.5012/bkcs.2007.28.1.095
  4. Fabrication and Micropatterning of a Hybrid Composite of Amorphous Calcium Carbonate and Poly(ethylenimine) vol.28, pp.3, 2006, https://doi.org/10.5012/bkcs.2007.28.3.457
  5. Mitochondria targeting delivery of nucleic acids vol.5, pp.8, 2006, https://doi.org/10.1517/17425247.5.8.879