DOI QR코드

DOI QR Code

Comparative and Structural Analysis of the Interaction between β-Lactoglobulin type A and B with a New Anticancer Component (2,2'-Bipyridin n-Hexyl Dithiocarbamato Pd(II) Nitrate)

  • Divsalar, A. (Institute of Biochemistry and Biophysics, University of Tehran, Tehran) ;
  • Saboury, A.A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Mansoori-Torshizi, H. (Department of Chemistry, University of Sistan & Bluchestan) ;
  • Hemmatinejad, B. (Department of Chemistry, Shiraz University)
  • Published : 2006.11.20

Abstract

The interaction between whey carrier protein $\beta$-lactoglobulin type A and B (BLG-A and -B) and 2,2'-bipyridin n-hexyl dithiocarbamato Pd(II) nitrate (BPHDC-Pd(II)), a new heavy metal complex designed for anticancer property, was investigated by fluorescence spectroscopy combined with chemometry and circular dichroism (CD) techniques. A strong fluorescence quenching reaction of BPHDC-Pd(II) to BLG-A and -B was observed. Hence, BPHDC-Pd(II) complex can be bound to both BLG-A and -B, and quench the fluorescence spectra of the proteins. The quenching constant was determined using the modified Stern-Volmer equation. The binding parameters were evaluated by fluorescence quenching method. The results of binding study provided evidences presence of two and three sets of binding sites on the BLG-B and -A, respectively, for BPHDC-Pd(II) complex. Using fluorescence spectroscopy and chemometry, the ability of BLG-A and -B to form an intermediate upon interaction with BPHDC-Pd(II) complex was assessed. CD studies displayed that under influence of different concentrations of BPHDC-Pd(II) complex, the regular secondary structure of BLG-B had no significant changes, whereas for BLG-A a transition from $\alpha$-helix to $\beta$-structure was appeared. The results for both of BLG-A and -B displayed that BPHDC-Pd(II) complex can induce a conformational transition from the native form to an intermediate state with a slightly opened conformation, which is detectable with chemometry analyses.

Keywords

References

  1. Relkin, P. Int. J. Biol. Macrol. 1998, 22, 59 https://doi.org/10.1016/S0141-8130(97)00089-5
  2. Lange, D. C.; Kotari, R.; Ramesh, P. C.; Shutish, P. C. Biophys. Chem. 1998, 74, 45 https://doi.org/10.1016/S0301-4622(98)00164-1
  3. Hong, Y. H.; Creamer, L. K. Int. Dairy J. 2002, 12, 345 https://doi.org/10.1016/S0958-6946(02)00030-4
  4. Sawyer, L.; Kontopidis, G. Biochim. Biopys. Acta 2000, 1482, 136 https://doi.org/10.1016/S0167-4838(00)00160-6
  5. Jankowski, C. K.; Sichel, D. I. J. Mol. Struct. 2003, 629, 185 https://doi.org/10.1016/S0166-1280(03)00141-6
  6. Zsila, F.; Bikadi, Z. Spectrochimica. Acta 2005, 62, 666 https://doi.org/10.1016/j.saa.2005.02.037
  7. Busti, P.; Scarpeci, S.; Gatti, C. A.; Delorenzi, N. J. Food. Hydrocolloids 2005, 19, 249 https://doi.org/10.1016/j.foodhyd.2004.05.007
  8. Bon, C. L.; Domonique, D.; Nicolari, T. Int. Dairy J. 2002, 12, 671 https://doi.org/10.1016/S0958-6946(02)00056-0
  9. Oliveira, K. M. G.; Valente-Mesquita, V. L.; Botelho, M. M.; Sawyer, L. Eur. J. Biochem. 2001, 268, 477
  10. Divsalar, A.; Saboury, A. A.; Moosavi-Movahedi, A. A.; Mansoori-Torshizi, H. Int. J. Biol. Macro. 2006, 38, 9 https://doi.org/10.1016/j.ijbiomac.2005.12.010
  11. Rosenberg, B.; Van Kamp, L.; Trosko, J. E.; Mansour, V. H. Nature 1969, 222, 385 https://doi.org/10.1038/222385a0
  12. Giovavagnini, L.; Marzano, C.; Bettio, F.; Fregona, D. J. Inorg. Biochem. 2005, 99, 2139 https://doi.org/10.1016/j.jinorgbio.2005.07.016
  13. Budzisz, E.; Krajewska, U.; Rozalski, M. Polish J. Pharm. 2004, 56, 473
  14. Zhang, Q.; Zhong, W.; Xing, B.; Tang, W.; Chen, Y. J. Inorg. Biochem. 1998, 72, 195 https://doi.org/10.1016/S0162-0134(98)10080-6
  15. Matesanz, A. I.; Perenz, J. M.; Navarro, P.; Moreno, J. M.; Colacio, E.; Souza, P. J. Inorg. Biochem. 1999, 76, 29 https://doi.org/10.1016/S0162-0134(99)00105-1
  16. Genova, P.; Varadiniva, T.; Matesanz, A. I.; Marinova, D.; Souza, P. Toxic. Appli. Pharm. 2004, 197, 107 https://doi.org/10.1016/j.taap.2004.02.006
  17. Paul, A. K.; Mansouri-Torshizi, H.; Srivastava, T. S.; Chavan, S. J.; Chitnis, M. P. J. Inorg. Biochem. 1993, 50, 9 https://doi.org/10.1016/0162-0134(93)80010-7
  18. Mansouri-Torshizi, H.; Srivastava, T. S.; Perekh, H. K.; Chitnis, M. P. J. Inorg. Biochem. 1992, 45, 135 https://doi.org/10.1016/0162-0134(92)80008-J
  19. Dufour, E.; Michael, C.; Heartle, T. FEBS Lett. 1990, 277, 223 https://doi.org/10.1016/0014-5793(90)80850-I
  20. Piez, K. A.; Davie, E. W.; Folx, J. E.; Gladner, J. A. J. Biol. Chem. 1961, 236, 2912
  21. Manavalan, P.; Johnson, C. J. R. Anal. Biochem. 1987, 167, 76 https://doi.org/10.1016/0003-2697(87)90135-7
  22. Yang, J. T.; Wu, C. S. C.; Martinez, H. M. Meth. Enzymol. 1986, 130, 208 https://doi.org/10.1016/0076-6879(86)30013-2
  23. Malinowski, E. R. Factor Analysis in Chemistry; Wiley & Sons: New York, 1991
  24. Diaz-Cruz, M. S.; Mendieta, J.; Tauler, R.; Esteban, M. Anal. Chem. 1999, 71, 4629 https://doi.org/10.1021/ac990467w
  25. Gao, H.; Lei, L.; Liu, J.; Kong, Q.; Chen, X.; Hu, Z. J. Photochem. Photobiol. A 2004, 167, 213 https://doi.org/10.1016/j.jphotochem.2004.05.017
  26. Shaikh, S. M. T.; Seetharamappa, J.; Kandagal, P. B.; Ashoka, S. J. Mol. Struct. 2006, 786, 46 https://doi.org/10.1016/j.molstruc.2005.10.021
  27. Suresh Kumar, H. M.; Kunabenchi, R. S.; Biradar, J. S.; Math, N. N.; Kadadevarmath, J. S.; Inamdar, S. R. J. Lumin. 2006, 116, 35 https://doi.org/10.1016/j.jlumin.2005.02.012
  28. Hu, Y.; Liu, Y.; Pi, Z.; Qu, S. S. Bioorg. Med. Chem. 2005, 13, 6609 https://doi.org/10.1016/j.bmc.2005.07.039
  29. Liu, X. F.; Xia, Y. M.; Fang, Y. J. Inorg. Biochem. 2005, 99, 1449 https://doi.org/10.1016/j.jinorgbio.2005.02.025
  30. Kelly, S. M.; Price, N. C. Curr. Protein Peptide Sci. 2000, 1, 349 https://doi.org/10.2174/1389203003381315
  31. Viseu, M. T.; Carvalho, T. I.; Costa, S. M. B. Biophys. J. 2004, 86, 2392 https://doi.org/10.1016/S0006-3495(04)74296-4
  32. Busti, P.; Gatti, C. A.; Delorenzi, N. J. Int. J. Biol. Macromol. 1998, 23, 143 https://doi.org/10.1016/S0141-8130(98)00037-3
  33. Kumar, H. M. S.; Kunabenchi, R. S.; Biradar, J. S.; Math, N. N.; Kadadevarmath, J. S.; Inamdar, S. R. J. Lumin. 2006, 116, 35 https://doi.org/10.1016/j.jlumin.2005.02.012
  34. Tian, F.; Johnson, K.; Lesar, A. E.; Moseley, H.; Ferguson, J.; Samuel, I. D. W.; Mazzini, A.; Brancaleon, L. Biochim. Biophys. Acta 2006, 1760, 38 https://doi.org/10.1016/j.bbagen.2005.09.005
  35. Creamer, L. K. Biochemistry 1995, 34, 7170 https://doi.org/10.1021/bi00021a031
  36. Sakai, K.; Sakurai, K.; Sakai, M.; Hoshino, M.; Goto, Y. Protein Sci. 2000, 9, 1719
  37. Cho, Y.; Batt, C. A.; Sawyer, L. J. Biol. Chem. 1994, 269, 11102
  38. Brownlow, S.; Cabral, J. H. M.; Cooper, R.; Flower, D. R.; Yewdall, S. J.; Polikarpov, I.; North, A. C. T.; Sawyer, L. Structure 1997, 5, 481 https://doi.org/10.1016/S0969-2126(97)00205-0
  39. Leher, S. S. Biochemistry 1971, 10, 3254 https://doi.org/10.1021/bi00793a015
  40. Djuran, M. I.; Milinkovic, S. U. Polyhedron 1999, 18, 3611 https://doi.org/10.1016/S0277-5387(99)00290-9
  41. Zhu, L.; Kostic, N. Inorg. Chim. Acta 2002, 339, 104 https://doi.org/10.1016/S0020-1693(02)00928-3
  42. Tatjana, N.; Kostic, P.; Kostic, N. J. Am. Chem. Soc. 1996, 118, 51 https://doi.org/10.1021/ja952162e
  43. Tatjana, N.; Kostic, P.; Kostic, N. J. Am. Chem. Soc. 1996, 118, 5946 https://doi.org/10.1021/ja960168d
  44. Zhu, L.; Kostic, P.; Kostic, N. Inorg. Chem. 1992, 31, 3994 https://doi.org/10.1021/ic00045a026
  45. Zhu, L.; Kostic, P.; Kostic, N. J. Am. Chem. Soc. 1993, 115, 4566 https://doi.org/10.1021/ja00064a019
  46. Fraczkiewicz, R.; Braun, W. J. Comp. Chem. 1998, 19, 319 https://doi.org/10.1002/(SICI)1096-987X(199802)19:3<319::AID-JCC6>3.0.CO;2-W
  47. Divsalar, A.; Saboury, A. A.; Moosavi-Movahedi, A. A. Protein J. 2006, 25, 157 https://doi.org/10.1007/s10930-006-0007-3
  48. Ragona, L.; Fogolari, F.; Romagnoli, S.; Zetta, L.; Maubois, J. L. J. Mol. Biol. 1999, 293, 953 https://doi.org/10.1006/jmbi.1999.3191
  49. Bokvistl, M.; Lindstro, F.; Watts, A. J. Mol. Biol. 2004, 335, 1039 https://doi.org/10.1016/j.jmb.2003.11.046

Cited by

  1. Comparative Studies on the Interaction Between Bovine β-lacto-globulin Type A and B and a New Designed Pd(II) Complex with Anti-tumor Activity at Different Temperatures vol.26, pp.5, 2009, https://doi.org/10.1080/07391102.2009.10507274
  2. Kinetic and mechanistic studies on the Pd-Cl cleavage of dichloro- [1-alkyl-2-(naphthylazo)imidazole]palladium(II) complexes by 2,2′-bipyridine vol.43, pp.3, 2010, https://doi.org/10.1002/kin.20540
  3. γ-Oxo-1-pyrenebutyric acid used for fluorescent detection of serum albumins and trypsin vol.2, pp.10, 2012, https://doi.org/10.1039/c2ra01011a
  4. Spectroscopic Investigation on the Binding of the Antitumoral Pd(II) Complex to Human Serum Albumin vol.60, pp.2, 2012, https://doi.org/10.1002/jccs.201200122
  5. Novel 2,2′-bipyridine palladium(II) complexes with glycine derivatives: synthesis, characterization, cytotoxic assays and DNA-binding studies vol.10, pp.5, 2013, https://doi.org/10.1007/s13738-013-0237-1
  6. β-Lactoglobulin nanoparticle as a chemotherapy agent carrier for oral drug delivery system vol.12, pp.4, 2015, https://doi.org/10.1007/s13738-014-0519-2
  7. Palladium complexes: new candidates for anti-cancer drugs vol.13, pp.5, 2016, https://doi.org/10.1007/s13738-015-0804-8
  8. Bovine and Human Serum Albumin Interactions with 3-Carboxyphenoxathiin Studied by Fluorescence and Circular Dichroism Spectroscopy vol.15, pp.6, 2010, https://doi.org/10.3390/molecules15063905
  9. Microwave irradiation under different pH conditions induced a decrease in β-lactoglobulin antigenicity vol.229, pp.5, 2009, https://doi.org/10.1007/s00217-009-1114-0
  10. Conformational and Structural Changes of Choline Oxidase from Alcaligenes Species by Changing pH Values vol.29, pp.8, 2006, https://doi.org/10.5012/bkcs.2008.29.8.1510
  11. DNA-Binding and Thermodynamic Parameters, Structure and Cytotoxicity of Newly Designed Platinum(II) and Palladium(II) Anti-Tumor Complexes vol.32, pp.3, 2006, https://doi.org/10.5012/bkcs.2011.32.3.947
  12. Probing the biological evaluations of a new designed Pt(II) complex using spectroscopic and theoretical approaches: human hemoglobin as a target vol.34, pp.5, 2006, https://doi.org/10.1080/07391102.2015.1071280
  13. Destructive effect of anticancer oxali-palladium on heme degradation through the generation of endogenous hydrogen peroxide vol.34, pp.11, 2006, https://doi.org/10.1080/07391102.2015.1121408
  14. 3′‐Methyl‐4‐thio‐1H‐tetrahydropyranspiro‐5′‐hydantoin platinum complex as a novel potent anticancer agent and xanthine oxidase inhibitor vol.353, pp.7, 2006, https://doi.org/10.1002/ardp.202000039
  15. Interaction of the synthesized anticancer compound of the methyl-glycine 1,10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecul vol.17, pp.7, 2006, https://doi.org/10.1007/s13738-020-01879-1