DOI QR코드

DOI QR Code

Full-length Fas-associated Death Domain Protein Interacts with Short Form of Cellular FLICE Inhibitory Protein

  • Jeong, Mi-Suk (Korea Nanobiotechnology Center, Pusan National University) ;
  • Jang, Se-Bok (Korea Nanobiotechnology Center, Pusan National University)
  • Published : 2006.01.20

Abstract

Fas-associated death domain protein (FADD) recruits and activates procaspase-8 through interactions between the death effector domains of these two proteins. Cellular FLICE-inhibitory protein (c-FLIP) was identified as a molecule with sequence homology to caspase-8. It has been postulated that c-FLIP prevents formation of the competent death-inducing signaling complex in a ligand-dependent manner, through its interaction with FADD and/or caspase-8. However, the interaction of FADD and $c-FLIP_s$ (short form) in apoptosis signaling has been controversially discussed. We show the purification and the characterization of human full-length FADD and $c-FLIP_s$ expressed in Escherichia coli. The purified FADD and $c-FLIP_s$ are shown as homogeneity, respectively, in SDS-PAGE analysis and light-scattering measurements. The folding properties of the $\alpha$-helical structure of FADD and the super-secondary structure of $c-FLIP_s$ proteins were characterized by circular dichroism spectroscopy. Furthermore, we report here a series of biochemical and biophysical data for FADD-$c-FLIP_s$ binding in vitro. The binding of both FADD and $c-FLIP_s$ proteins was detected by BIAcore biosensor, fluorescence measurement, and size-exclusion column (SEC).

Keywords

References

  1. Krammer, P. H. Nature 2000, 407, 789-795 https://doi.org/10.1038/35037728
  2. Schulze-Osthoff, K.; Ferrari, D.; Los, M.; Wesselborg, S.; Peter, M. E. Eur. J. Biochem. 1998, 254, 439-459 https://doi.org/10.1046/j.1432-1327.1998.2540439.x
  3. Kischkel, F. C.; Hellbardt, S.; Behrmann, L.; Germer, M.; Pawlita, M.; Krammer, P. H.; Peter, M. E. EMBO J. 1995, 14, 5579-5588
  4. Medema, J. P.; Scaffidi, C.; Kischkel, F. C.; Shevchenko, A.; Mann, M.; Krammer, P. H.; Peter, M. E. EMBO J. 1997, 16, 2794- 2804 https://doi.org/10.1093/emboj/16.10.2794
  5. Abe, K.; Kurakin, A.; Mohseni-Maybodi, M.; Kay, B.; Khosravi- Far, R. Ann NY Acad Sci. 2000, 926, 52-63 https://doi.org/10.1111/j.1749-6632.2000.tb05598.x
  6. Mariani, S. M.; Krammer, P. H. Eur. J. Immunol. 1998, 28, 1492-1498 https://doi.org/10.1002/(SICI)1521-4141(199805)28:05<1492::AID-IMMU1492>3.0.CO;2-X
  7. Pitti, R. M.; Marsters, S. A.; Ruppert, S.; Donahue, C. J.; Moore, A.; Ashkenazi, A. J. Biol. Chem. 1996, 271, 12687-12690
  8. Wiley, S. R.; Schooley, K.; Smolak, P. J.; Din, W. S.; Huang, C. P.; Nicholl, J. K.; Sutherland, G. R.; Smith, T. D.; Rauch, C.; Smith, C. A. Immunity 1995, 3, 673-682 https://doi.org/10.1016/1074-7613(95)90057-8
  9. Thome, M.; Schneider, P.; Hofmann, K.; Fickenscher, H.; Meinl, E.; Neipel, F.; Mattmann, C.; Burns, K.; Bodmer, J. L.; Schroter, M.; Scaffidi, C.; Krammer, P. H.; Peter, M. E.; Tschopp, J. Nature 1997, 386, 517-521 https://doi.org/10.1038/386517a0
  10. Hu, S.; Vincenz, C.; Buller, M.; Dixit, V. M. J. Biol. Chem. 1997, 272, 9621-9624 https://doi.org/10.1074/jbc.272.15.9621
  11. Irmler, M.; Thome, M.; Hahne, M.; Schneider, P.; Hofmann, K.; Steiner, V.; Bodmer, J. L.; Schroter, M.; Burns, K.; Mattmann, C.; Rimoldi, D.; French, L. E.; Tschopp, J. Nature 1997, 388, 190-195 https://doi.org/10.1038/40657
  12. Goltsev, Y. V.; Kovalenko, A. V.; Arnold, E.; Varfolomeev, E. E.; Brodianskii, V. M.; Wallach, D. J. Biol. Chem. 1997, 272, 19641-19644 https://doi.org/10.1074/jbc.272.32.19641
  13. Hu, S.; Vincenz, C.; Buller, M.; Dixit, V. M. J. Biol. Chem. 1997, 272, 17255-17257 https://doi.org/10.1074/jbc.272.28.17255
  14. Shu, H. B.; Halpin, D. R.; Goeddel, D. V. Immunity 1997, 6, 751-763 https://doi.org/10.1016/S1074-7613(00)80450-1
  15. Srinivasula, S. M.; Ahmad, M.; Ottilie, S.; Bullrich, F.; Banks, S.; Wang, Y.; Fernandes-Alnemri, T.; Croce, C. M.; Litwack, G.; Tomaselli, K. J.; Armstrong, R. C.; Alnemri, E. S. J. Biol. Chem. 1997, 272, 18542-18545 https://doi.org/10.1074/jbc.272.30.18542
  16. Inohara, N.; Koseki, T.; Hu, Y.; Chen, S.; Nunez, G. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 10717-10722 https://doi.org/10.1073/pnas.94.20.10717
  17. Scaffidi, C.; Schmitz, I.; Krammer, P. H.; Peter, M. E. J. Biol. Chem. 1999, 274, 1541-1548 https://doi.org/10.1074/jbc.274.3.1541
  18. Eberstadt, M.; Huang, B.; Chen, Z.; Meadows, R. P.; Ng, S.-C.; Zheng, L.; Lenardo, M. J.; Fesik, S. W. Nature 1998, 392, 941-945 https://doi.org/10.1038/31972
  19. Lea, D. T.; Choi, J. D. Bull. Korean Chem. Soc. 2005, 6, 916-920
  20. Kim, K. S.; Kang, J. H. Bull. Korean Chem. Soc. 2005, 8, 1255-1259
  21. Fesik, S. W. Cell 2000, 103, 273-282 https://doi.org/10.1016/S0092-8674(00)00119-7
  22. Thorburn, A. Cell Signal 2004, 16, 139-144 https://doi.org/10.1016/j.cellsig.2003.08.007
  23. Thomas, L. R.; Stillman, D. J.; Thorburn, A. J. Biol. Chem. 2002, 277, 34343-34348 https://doi.org/10.1074/jbc.M204169200

Cited by

  1. Survey of the year 2006 commercial optical biosensor literature vol.20, pp.5, 2007, https://doi.org/10.1002/jmr.862
  2. The Binding of Human CLIC1 with SEDL and Its Characterization in vitro vol.28, pp.4, 2006, https://doi.org/10.5012/bkcs.2007.28.4.574
  3. Attractive Sulfur...π Interaction between Fluorinated Dimethyl Sulfur (FDMS) and Benzene vol.28, pp.6, 2006, https://doi.org/10.5012/bkcs.2007.28.6.959
  4. Identification and Functional Analysis of SEDL-binding and Homologue Proteins by Immobilized GST Fusion and Motif Based Methods vol.29, pp.2, 2006, https://doi.org/10.5012/bkcs.2008.29.2.381