DOI QR코드

DOI QR Code

Ab initio Study of the Complexes of Trimethyl Ether of Monodeoxycalix[4]arene with Potassium Ion: Cation-π Interactions

  • Lee, Hyung-Dae (Department of Chemistry, Chung-Ang University) ;
  • Kim, Kwang-Ho (Department of Chemistry, Chung-Ang University) ;
  • Lee, Ho-Jun (Department of Chemistry, Chung-Ang University) ;
  • Lee, Sik (Center for Computational Biology and Bioinformatics, Korea Institute of Science and Technology Information) ;
  • Nanbu, Shinkoh (Computing and Communications Center, Kyushu University) ;
  • Choe, Jong-In (Department of Chemistry, Chung-Ang University)
  • Published : 2006.04.20

Abstract

In this study, we have performed ab initio computer simulations to investigate the conformational and complexation characteristics of the trimethyl ether of p-tert-butylmonodeoxycalix[4]arene (6) with a potassium ion. The structures of different conformers of 6 and their potassium complexes were optimized by using ab initio RHF/6-31G and B3LYP/6-31G(d,p) methods. The relative stability of the various conformers of the uncomplexed 6 is in following order: cone (most stable) > 1-partial-cone ~ 2i-partial-cone > 2-partial-cone ~ 1,3-alternate > 3i-partial-cone. However, the relative stability of the conformational complexes of 6 with $K^+$ is in the following order: 2-partial cone ~ 1,3-alternate > cone > 3-partial cone > 1-partial cone (least stable). The highest binding strengths of 2-partial-cone and 1,3-alternate complexes originate from two strong cation-$\pi$ interactions and two strong cation-oxygen interactions in the complex of 6+$K^+$. Due to the cation-$\pi$ interactions, the calculated C-C bond distances in the arenes of the $K^+$-complexes are about 0.0048 $\AA$ longer than the values of their isolated hosts.

Keywords

References

  1. Gutsche, C. D. Calixarenes; Royal Society of Chemistry; Cambridge, 1989
  2. Calixarenes: A Versatile Class of Macrocyclic Compounds; Vicens, J., Bohmer, V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991
  3. Gutsche, C. D. Calixarenes Revisited; The Royal Society of Chemistry: Cambridge, 1998
  4. Gutsche, C. D.; Bauer, L. J. Tetrahedron Lett. 1981, 22, 4763 https://doi.org/10.1016/S0040-4039(01)92337-8
  5. Computational Approaches in Supramolecular Chemistry; Wipff, G., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994
  6. Guilbaud, P.; Varnek, A.; Wipff, G. J. Am. Chem. Soc. 1993, 115, 8298 https://doi.org/10.1021/ja00071a044
  7. Varnek, A.; Wipff, G. J. Mol. Struc. 1996, 363, 67 https://doi.org/10.1016/0166-1280(95)04425-6
  8. Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.; Reinhoudt, D. N.; van Hummel, G. J.; Ugozzoli, F.; Andreetti, G. D. J. Am. Chem. Soc. 1990, 112, 4165 https://doi.org/10.1021/ja00167a010
  9. Groonen, L. C.; van Loon, J.-D.; Verboom, W.; Harkema, S.; Casnati, A.; Ungaro, R.; Pochini, A.; Ugozzoli, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 2385 https://doi.org/10.1021/ja00007a006
  10. Harada, T.; Rudzinski, J. M.; Shinkai, S. J. Chem. Soc., Perkin Trans. 1992, 2, 2109
  11. Harada, T.; Rudzinski, J. M.; Shinkai, S. Tetrahedron 1993, 49, 5941 https://doi.org/10.1016/S0040-4020(01)87180-5
  12. Harada, T.; Ohseto, F.; Shinkai, S. Tetrahedron 1994, 50, 13377 https://doi.org/10.1016/S0040-4020(01)89345-5
  13. van Hoorn, W. P.; Briels, W. J.; van Duynthoven, J. P. M.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Org. Chem. 1998, 63, 1299 https://doi.org/10.1021/jo972134+
  14. Blixt, J.; Detellier, C. J. Am. Chem. Soc. 1995, 117, 8536 https://doi.org/10.1021/ja00138a007
  15. Choe, J.-I.; Lee, S. H.; Oh, D.-S. Bull. Korean Chem. Soc. 2004, 25, 55 https://doi.org/10.5012/bkcs.2004.25.1.055
  16. Choe, J.-I.; Lee, S. H. Bull. Korean Chem. Soc. 2004, 25, 553 https://doi.org/10.1007/s11814-008-0093-3
  17. Fukazawa, Y.; Yoshimura, K.; Sasaki, S.; Yamazaki, M.; Okajima, T. Tetrahedron 1996, 52, 2301 https://doi.org/10.1016/0040-4020(95)01047-5
  18. Lhotak, P.; Shinkai, S. J. Phys. Org. Chem. 1997, 10, 273 https://doi.org/10.1002/(SICI)1099-1395(199705)10:5<273::AID-POC877>3.0.CO;2-Z
  19. Shinkai, S.; Iwamoto, K.; Araki, K. Chem. Lett. 1990, 1263
  20. Kim, K. S.; Lee, J. Y.; Lee, S. J.; Ha, T.-K.; Kim, D. H. J. Am. Chem. Soc. 1994, 116, 7399 https://doi.org/10.1021/ja00095a050
  21. Lee, J. Y.; Lee, S. J.; Cho, S. J.; Kim, K. S.; Ha, T.-K. Chem. Phys. Lett. 1995, 232, 67 https://doi.org/10.1016/0009-2614(94)01330-X
  22. Oh, K. S.; Lee, C.-W.; Choi, H. S.; Lee, S. J.; Kim, K. S. Org. Lett. 2000, 2, 2679 https://doi.org/10.1021/ol000159g
  23. Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 4177 https://doi.org/10.1021/ja00119a037
  24. Mecozzi, S.; West, Jr., A. P.; Dougherty, D. A. J. Am. Chem. Soc. 1995, 118, 2307 https://doi.org/10.1021/ja9539608
  25. Mecozzi, S.; West, Jr., A. P.; Dougherty, D. A. Proc. Natl. Acad. Sci. USA 1996, 93, 10566 https://doi.org/10.1073/pnas.93.20.10566
  26. Dougherty, D. A.; Stauffer, D. A. Science 1990, 250, 1558 https://doi.org/10.1126/science.2274786
  27. Kumpf, R. A.; Dougherty, D. A. Science 1993, 261, 1708 https://doi.org/10.1126/science.8378771
  28. Dougherty, D. A. Science 1996, 271, 163 https://doi.org/10.1126/science.271.5246.163
  29. Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303 https://doi.org/10.1021/cr9603744
  30. Miklis, P. C.; Ditchfield, R.; Spencer, T. A. J. Am. Chem. Soc. 1998, 120, 10482 https://doi.org/10.1021/ja980505d
  31. Nicholas, J. B.; Hay, B. P.; Dixon, D. A. J. Phys. Chem. A 1999, 103, 1394 https://doi.org/10.1021/jp9837380
  32. Nicholas, J. B.; Hay, B. P. J. Phys. Chem. A 1999, 103, 9815 https://doi.org/10.1021/jp990570p
  33. Hay, B. P.; Nicholas, J. B.; Feller, D. J. Am. Chem. Soc. 2000, 122, 10083 https://doi.org/10.1021/ja9937066
  34. Wipff, G. In Calixarenes 2001; Asfari, Z., Bohmer, V., Harrowfield, J., Vicens, J. Eds.; Kluwer; Dordrecht, 2001. pp 312-333
  35. Bernardino, R. J.; Cabral, C. Supramol. Chem. 2002, 14, 57 https://doi.org/10.1080/10610270290006574
  36. Marcias, A. T.; Norton, J. E.; Evanseck, J. D. J. Am. Chem. Soc. 2003, 125, 2351 https://doi.org/10.1021/ja0285971
  37. Choe, J.-I.; Oh, D.-S. Bull. Korean Chem. Soc. 2004, 25, 847 https://doi.org/10.5012/bkcs.2004.25.6.847
  38. Hong, B. H.; Lee, J. Y.; Lee, C.-W.; Kim, J. C.; Bae, S. C.; Kim, K. S. J. Am. Chem. Soc. 2001, 123, 10748 https://doi.org/10.1021/ja016526g
  39. Kim, K. S.; Suh, S. B.; Kim, J. C.; Hong, B. H.; Lee, E. C.; Yun, S.; Tarakeshwar, P.; Lee, J. Y.; Kim, Y.; Ihm, H.; Kim, H. G.; Lee, J. W.; Kim, J. K.; Lee, H. M.; Kim, D.; Cui, C.; Youn, S. J.; Chung, H. Y.; Choi, H. S.; Lee, C.-W.; Cho, S. J.; Jeong, S.; Cho, J.-H. J. Am. Chem. Soc. 2002, 124, 14268 https://doi.org/10.1021/ja0259786
  40. Hong, B. H.; Bae, S. C.; Lee, C.-W.; Jeong, S.; Kim, K. S. Science 2001, 294, 348 https://doi.org/10.1126/science.1062126
  41. Kim, K. S. Curr. Appl. Phys. 2002, 2, 65 https://doi.org/10.1016/S1567-1739(01)00091-8
  42. Suh, S. B.; Hong, B. H.; Tarakeshwar, P.; Youn, S. J.; Jeong, S.; Kim, K. S. Phys. Rev. B 2003, 67, 241402(R) https://doi.org/10.1103/PhysRevB.67.241402
  43. Kim, K. S. Bull. Korean Chem. Soc. 2003, 24, 757 https://doi.org/10.1007/s11814-007-0038-2
  44. HyperChem Release 6.3; Hypercube, Inc.: Waterloo, Ontario, Canada, 2001
  45. Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465 https://doi.org/10.1007/BF02705436
  46. Choe, J.-I.; Chang, S.-K.; Lee, S.; Nanbu, S. J. Mol. Struc. 2005
  47. Gokel, W. G.; Wall, S. L. D.; Meadows, E. S. Eur. J. Org. Chem. 2000, 2967
  48. Beer, P. D.; Drew, M. G. B.; Gale, P. A.; Leeson, P. B.; Ogden, M. I. J. Chem. Soc., Dalton Trans. 1994, 3479
  49. Iwamoto, K.; Ikeda, A.; Araki, K.; Harada, T.; Shinkai, S. Tetrahedron 1993, 49, 9937 https://doi.org/10.1016/S0040-4020(01)80191-5
  50. Ungaro, R.; Pochini, A.; Andreetti, G. D.; Sangermano, V. J. Chem. Soc., Perkin Trans. 2 1984, 1979
  51. Ungaro, R.; Pochini, A.; Andreetti, G. D.; Domiano, P. J. Chem. Soc., Perkin Trans. 2 1985, 197
  52. Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris, S. J.; Kaitner, B.; Lough, A. J.; McKervey, M. A.; Ruhl, B. L.; Schwing-Weill, M.-J.; Seward, E. M. J. Am. Chem. Soc. 1989, 111, 8681 https://doi.org/10.1021/ja00205a018
  53. Giannini, L.; Solari, E.; Floriani, C.; Re, N.; Chiesi-Villa, A.; Rizzoli, C. Inorg. Chem. 1999, 38, 1438 https://doi.org/10.1021/ic9811796
  54. Guillemot, G.; Solari, E.; Rizzoli, C.; Floriani, C. Chem.-Eur. J. 2002, 8, 2072 https://doi.org/10.1002/1521-3765(20020503)8:9<2072::AID-CHEM2072>3.0.CO;2-M
  55. Dubberley, S. R.; Blake, A. J.; Mountford, P. Chem. Comm. 1997, 1603
  56. Cambridge Structure Database; Cambridge Crystallographic Data Centre: Cambridge, U. K., 2004

Cited by

  1. Metal ion complexation in acetonitrile by cone, di-ionised calix[4]arene-1,2-crown ethers with two pendant dansyl fluorophores vol.23, pp.11, 2011, https://doi.org/10.1080/10610278.2011.626039
  2. DFT Conformational Study of the Monomethoxycalix[5]arene vol.29, pp.11, 2006, https://doi.org/10.5012/bkcs.2008.29.11.2152
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450