DOI QR코드

DOI QR Code

Supramolecular Assembly of Rigid-Flexible Block Molecules into Organized Nano-Structures

  • Ryu, Ja-Hyoung (Center for Supramolecular Nano-Assembly (CSNA), Department of Chemistry, Yonsei University) ;
  • Cho, Byoung-Ki (Department of Chemistry, Dankook University) ;
  • Lee, Myong-Soo (Center for Supramolecular Nano-Assembly (CSNA), Department of Chemistry, Yonsei University)
  • Published : 2006.09.20

Abstract

Keywords

References

  1. Lehn, J. M. Supramolecular Chemistry, Concepts and Perspective; VCH: Weinheim, Germany, 1995
  2. Lee, M.; Cho, B.-K.; Zin, W.-C. Chem. Rev. 2001, 101, 3869 https://doi.org/10.1021/cr0001131
  3. Klok, H.-A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217 https://doi.org/10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D
  4. Stupp, S. I.; Pralle, M. U.; Tew, G. N.; Li, L.; Sayar, M.; Zubarev, E. R. MRS Bull. 2000, 42
  5. Loos, K.; Munoz-Guerra, S. Microstructure and Crystallization of Rigid-Coil Comblike Polymers and Block Copolymers in Supramolecular Polymers; Marcel Dekker: New York, 2000; Chapter 7
  6. Collings, P. J.; Hird, M. Introduction to Liquid Crystals, Chemistry and Physics; Taylor & Francis Ltd: London, UK, 1997
  7. Tschierske, C. J. Mater. Chem. 2001, 11, 2647 https://doi.org/10.1039/b102914m
  8. Foster, S.; Plantenberg, T. Angew. Chem. Int. Ed. 2002, 41, 688 https://doi.org/10.1002/1521-3773(20020301)41:5<688::AID-ANIE688>3.0.CO;2-3
  9. Foster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195 https://doi.org/10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V
  10. Khandpur, A. K.; Foster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796 https://doi.org/10.1021/ma00130a012
  11. Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681 https://doi.org/10.1021/cr9603892
  12. Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071 https://doi.org/10.1021/cr990125q
  13. Jo, H. J.; Jung, S. H,; Kim, H.-J. Bull. Korean Chem. Soc. 2004, 25, 1869 https://doi.org/10.5012/bkcs.2004.25.12.1869
  14. Hennigar, T. L.; MacQuarrie, D. C.; Losier, P.; Rogers, R. D.; Zaworotko, M. J. Angew. Chem. Int. Ed. 1997, 36, 972 https://doi.org/10.1002/anie.199709721
  15. Park, K.-M.; Lee, E.; Roh, S.-G.; Kim, J.; Kim, K. Bull. Korean Chem. Soc. 2004, 25, 1711 https://doi.org/10.5012/bkcs.2004.25.11.1711
  16. Kaes, C.; Hosseini, M. W.; Rickard, C. E. F.; Skelton, B. W.; White, A. H. Angew. Chem. Int. Ed. 1998, 37, 920 https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<920::AID-ANIE920>3.0.CO;2-O
  17. Cui, Y.; Lee, S. J.; Lin, W. J. Am. Chem. Soc. 2003, 125, 6014 https://doi.org/10.1021/ja029926s
  18. Tschierske, C. J. Mater. Chem. 1998, 8, 1485 https://doi.org/10.1039/a800946e
  19. Berresheim, A. J.; Muller, B.; Mullen, K. Chem. Rev. 1999, 99, 1747 https://doi.org/10.1021/cr970073+
  20. Steffen, W.; Kohler, B.; Altmann, M.; Scherf, U.; Stitzer, K.; Loye, H.-C.; Bunz, U. H. F. Chem. Eur. J. 2001, 7, 117 https://doi.org/10.1002/1521-3765(20010105)7:1<117::AID-CHEM117>3.0.CO;2-5
  21. Jeneckhe, S. A.; Chen, X. L. Science 1999, 283, 372 https://doi.org/10.1126/science.283.5400.372
  22. Lee, M.; Yoo, Y.-S. J. Mater. Chem. 2002, 12, 2161 https://doi.org/10.1039/b201246d
  23. Stupp, S. I. Curr. Opin. Colloid Interface Sci. 1998, 3, 20 https://doi.org/10.1016/S1359-0294(98)80037-X
  24. Semenov, A. N.; Vasilenko, S. V. Sov. Phys. JETP 1986, 63(1)
  25. Semenov, A. N. Mol. Cryst. Liq. Cryst. 1991, 209, 191 https://doi.org/10.1080/00268949108036194
  26. Williams, D. R. M.; Fredrickson, G. H. Macromolecules 1992, 25, 3561 https://doi.org/10.1021/ma00039a040
  27. Halperin, A. Macromolecules 1990, 23, 2724 https://doi.org/10.1021/ma00212a023
  28. Lee, M.; Cho, B.-K.; Kim, H.; Zin, W.-C. Angew. Chem. Int. Ed. 1998, 37, 638 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<638::AID-ANIE638>3.0.CO;2-P
  29. Lee, M.; Cho, B.-K.; Kim, H.; Yoon, J.-Y.; Zin, W.-C. J. Am. Chem. Soc. 1998, 120, 9168 https://doi.org/10.1021/ja980654w
  30. Lee, M.; Lee, D.-W.; Cho, B.-K.; Yoon, J.-Y.; Zin, W.-C. J. Am. Chem. Soc. 1998, 120, 13258 https://doi.org/10.1021/ja9823619
  31. Lee, M.; Cho, B.-K.; Kang, Y.-S.; Zin, W.-C. Macromolecules 1999, 32, 7688 https://doi.org/10.1021/ma990515e
  32. Lee, M.; Cho, B.-K.; Kang, Y.-S.; Zin, W.-C. Macromolecules 1999, 32, 8531 https://doi.org/10.1021/ma9900333
  33. Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Angew. Chem., Int. Ed. 2003, 42, 772 https://doi.org/10.1002/anie.200390204
  34. Lee, M.; Jang, D.-W.; Kang, Y.-S.; Zin, W.-C. Adv. Mater. 1999, 11, 1018 https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1018::AID-ADMA1018>3.0.CO;2-P
  35. de Gans, B. J.; Wiegand, S.; Zubarev, E. R.; Stupp, S. I. J. Phys. Chem. B 2002, 106, 9730 https://doi.org/10.1021/jp025832t
  36. Tu, Y.; Wan, X.; Zhang, D.; Zhou, Q.; Wu, C. J. J. Am. Chem. Soc. 2000, 122, 10201
  37. Lee, M.; Oh, N.-K. J. Mater. Chem. 1996, 6, 1079 https://doi.org/10.1039/jm9960601079
  38. Hamley, I. W.; Ropp, K. A.; Rosedale, J. H.; Bates, F. S.; Almdal, K.; Mortensen, K. Macromolecules 1993, 26, 5959 https://doi.org/10.1021/ma00074a018
  39. Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Foster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. Faraday Discuss., Chem. Soc. 1994, 98, 7 https://doi.org/10.1039/fd9949800007
  40. Ryu, J.-H.; Oh, N.-K.; Zin, W.-C.; Lee, M. J. Am. Chem. Soc. 2004, 126, 3551 https://doi.org/10.1021/ja039793q
  41. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091 https://doi.org/10.1021/ma951138i
  42. Muller, M.; Schick, M. Macromolecules 1996, 29, 8900 https://doi.org/10.1021/ma960782+
  43. Raphael, E.; de Genn, P. G. Makromol. Chem., Macromol. Symp. 1992, 62, 1
  44. Burger, C.; Micha, M. A.; Oestereich, S.; Foster, S.; Antonietti, M. Europhys. Lett. 1998, 42, 425 https://doi.org/10.1209/epl/i1998-00266-0
  45. Ahn, J.-H.; Zin, W.-C. Macromolecules 2000, 33, 641 https://doi.org/10.1021/ma9912812
  46. Raez, J.; Tomba, J. P.; Manners, I.; Winnik, M. A. J. Am. Chem. Soc. 2003, 125, 9546 https://doi.org/10.1021/ja030251i
  47. Luzzati, V.; Tardieu, A.; Gulik-Krzwicki, T. Nature 1968, 217, 1028 https://doi.org/10.1038/2171028a0
  48. Kekicheff, P.; Tiddy, G. J. T. J. Phys. Chem. 1989, 93, 2520 https://doi.org/10.1021/j100343a056
  49. Fairhurst, C. E.; Fuller, S.; Gray, J.; Holmes, M. C.; Tiddy, G. J. T. Handbook of Liquid Crystals; Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H.-W.; Vill, V., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Vol. 3, p 341
  50. Yoo, Y.-S.; Choi, J.-H.; Song, J.-H.; Oh, N.-K.; Zin, W.-C.; Park, S.; Chang, T.; Lee, M. J. Am. Chem. Soc. 2004, 126, 6294 https://doi.org/10.1021/ja048856h
  51. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402 https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  52. Bunz, U. H. F. Acc. Chem. Res. 2001, 34, 998 https://doi.org/10.1021/ar010092c
  53. Breen, C. A.; Deng, T.; Breiner, T.; Thomas, E. L.; Swager, T. J. Am. Chem. Soc. 2003, 125, 9942 https://doi.org/10.1021/ja036024y
  54. Alexandridis, P.; Lindman, B. Amphiphilic Block Copolymer, Self-Assembly and Applicaitions; Elservier: New York, 2000
  55. Antonietti, M.; Forster, S. Adv. Mater. 2003, 15, 1323 https://doi.org/10.1002/adma.200300010
  56. Discher, D. E.; Eisenber, A. Science 2002, 297, 967 https://doi.org/10.1126/science.1074972
  57. Forster, S.; Plantenberg, T. Angew. Chem. Int. Ed. 2002, 41, 688 https://doi.org/10.1002/1521-3773(20020301)41:5<688::AID-ANIE688>3.0.CO;2-3
  58. Zhou, S.; Burger, C.; Chu, B.; Sawamura, M.; Nagahama, N.; Toganoh, M.; Hackler, U. E.; Isobe, H.; Nakamura, E. Science 2001, 291, 1944 https://doi.org/10.1126/science.291.5510.1944
  59. Chu, B. Laser Light Scattering, 2nd ed.; Academic Press: New York, 1991
  60. Vriezema, D. M.; Hoogbum, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Angew. Chem. Int. Ed. 2003, 42, 772-776 https://doi.org/10.1002/anie.200390204
  61. Holder, S. J.; Hiorns, R. C.; Sommerdijk, N. A. J. M.; Williams, S. J.; Jones, R. G.; Nolte, R. J. M. Chem. Commun. 1998, 1445
  62. Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigt-Martin, I.; Leibler, L. Macromolecules 1995, 28, 3080 https://doi.org/10.1021/ma00113a010
  63. Lee, M.; Oh, N.-K.; Choi, M.-G.. Polym. Bull. 1996, 37, 511 https://doi.org/10.1007/BF00556813
  64. Oh, N.-K.; Zin, W.-C.; Im, J.-H.; Ryu, J.-H.; Lee, M. Chem. Commun. 2004, 1092
  65. Schwab, M.; Stuehn, B. Phys. Rev. Lett. 1996, 76, 924 https://doi.org/10.1103/PhysRevLett.76.924
  66. Sakamota, N.; Hashimoto, T.; Han, C. D.; Vaidya, N. Macromolecules 1997, 30, 1621 https://doi.org/10.1021/ma960610c
  67. Lee, M.; Cho, B.-K.; Jang, Y.-G..; Zin, W.-C. J. Am. Chem. Soc. 2000, 122, 7449 https://doi.org/10.1021/ja000966a
  68. Cho, B.-K.; Chung, Y.-W.; Lee, N. Macromolecules 2005, 38, 10261 https://doi.org/10.1021/ma051890b
  69. Cho, B.-K.; Lee, M.; Oh, N.-K.; Zin, W.-C. J. Am. Chem. Soc. 2001, 123, 9677 https://doi.org/10.1021/ja011313c
  70. Cho, B.-K.; Chung, Y.-W.; Lee, M. Macromolecules 2005, 35, 10261
  71. Jin, L.-Y.; Bae, J.; Ahn, J.-H.; Lee, M. Chem. Commun. 2005, 1197
  72. Kao, H. M.; Stefanescu, A. D.; Wooley, K. L.; Schaefer, J. Macromolecules 2000, 33, 6214 https://doi.org/10.1021/ma0006124
  73. Bockstaller, M.; Fytas, G.; Wegner, G. Macromolecules 2001, 34, 3497 https://doi.org/10.1021/ma001863f
  74. Acierno, D.; Amendola, E.; Concilio, S.; Fresa, R.; Iannelli, P.; Vacca, P. Macromolecules 2000, 33, 9376 https://doi.org/10.1021/ma000821o
  75. Hamley, I. W.; Castelletto, V.; Lu, Z. B.; Imrie, C. T.; Itoh, T.; Al-Hussein, M. Macromolecules 2004, 37, 4798 https://doi.org/10.1021/ma0498619
  76. Bragg, R. A.; Clayden, J. Org. Lett. 2000, 2, 3351 https://doi.org/10.1021/ol0064462
  77. Lee, M.; Cho, B.-K.; Ihn, K. J.; Lee, W.-K.; Oh, N.-K.; Zin, W.-C. J. Am. Chem. Soc. 2001, 123, 4647 https://doi.org/10.1021/ja004071+
  78. Cho, B.-K.; Lee, M.; Oh, N.-K.; Zin, W.-C. J. Am. Chem. Soc. 2001, 123, 9677 https://doi.org/10.1021/ja011313c
  79. Jin, L. Y.; Ahn, J.-H.; Lee, M. J. Am. Chem. Soc. 2004, 126, 12208 https://doi.org/10.1021/ja0465552
  80. Kenichi, T. Phys. Rev. Lett. 1995, 75, 1807 https://doi.org/10.1103/PhysRevLett.75.1807
  81. Bohra, Y. K.; Olijnik, H.; Grosshans, W.; Holzapfel, W. B. Phys. Rev. Lett. 1981, 47, 1065 https://doi.org/10.1103/PhysRevLett.47.1065
  82. Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819 https://doi.org/10.1021/cr990116h
  83. Moore, J. S. Acc. Chem. Res. 1997, 30, 402 https://doi.org/10.1021/ar950232g
  84. Percec, V.; Ahn, C.-H.; Ungar, G.; Yeardley, D. J. P.; Möller, M.; Sheiko, S. S. Nature 1998, 391, 161 https://doi.org/10.1038/34384
  85. Schenning, A. P. H. J.; Elissen-Roman, C.; Weener, J. W.; Baars, M. W. P. L.; van der Gaast, S. J.; Meijer, E. W. J. Am. Chem. Soc. 1998, 120, 8199 https://doi.org/10.1021/ja9736774
  86. Gitsov, I. In Advances in Dendritic Macromolecules; Newkome, G. R., Ed.; Elsevier Science: Amsterdam, 2002; Vol. 5, pp 45-87
  87. Gitsov, I.; Wooley, K. L.; Frechet, J. M. J. Angew. Chem., Int. Ed. Engl. 1992, 31, 1200 https://doi.org/10.1002/anie.199212001
  88. Gitsov, I.; Frechet, J. M. J. Macromolecules 1993, 26, 6536 https://doi.org/10.1021/ma00076a035
  89. van Hest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.; van Genderen, M. H. P.; Meijer, E. W. Science 1995, 268, 1592 https://doi.org/10.1126/science.268.5217.1592
  90. Percec, V.; Cho, W.-D.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 2001, 123, 1302 https://doi.org/10.1021/ja0037771
  91. Yeardley, D. J. P.; Ungar, G.; Percec, V.; Holerca, M. N.; Johansson, G. J. Am. Chem. Soc. 2000, 122, 1684 https://doi.org/10.1021/ja993915q
  92. Jang, C.-J.; Ryu, J.-H.; Lee, J.-D.; Sohn, D.; Lee, M. Chem. Mater. 2004, 16, 4226 https://doi.org/10.1021/cm0492235
  93. Eisenbach, C. D.; Heinemann, T.; Ribbe, A.; Stadler, E. Macromol. Symp. 1994, 77, 125 https://doi.org/10.1002/masy.19940770116
  94. Osaheni, J. A.; Jenekhe, S. A. J. Am. Chem. Soc. 1995, 117, 7389 https://doi.org/10.1021/ja00133a012
  95. Lee, M.; Cho, B.-K.; Oh, N.-K.; Zin, W.-C. Macromolecules 2001, 34, 1987 https://doi.org/10.1021/ma001938f
  96. Ryu, J.-H.; Bae, J.; Lee, M. Macromolecules 2005, 38, 2050 https://doi.org/10.1021/ma0473723

Cited by

  1. Self-assembly of rod-coil molecules into lateral chain-length-dependent supramolecular organization vol.123, pp.2, 2012, https://doi.org/10.1002/app.34555
  2. Ordered nanostructures from self-assembly of H-shaped coil-rod-coil molecules vol.53, pp.1, 2014, https://doi.org/10.1002/pola.27448
  3. Self-assembly of amphiphilic linear diblock rod-coil molecules by hydrogen bond and π-π stacking interactions vol.34, pp.3, 2016, https://doi.org/10.1007/s10118-016-1755-y
  4. Supramolecular Assembly of Rigid-Flexible Block Molecules into Organized Nano-Structures vol.38, pp.5, 2007, https://doi.org/10.1002/chin.200705216
  5. Liquid crystal engineering – new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering vol.36, pp.12, 2007, https://doi.org/10.1039/b615517k
  6. Self-assembly of Dumbbell-shaped Rod Amphiphiles Based on Dodeca-p-phenylene vol.29, pp.8, 2006, https://doi.org/10.5012/bkcs.2008.29.8.1485
  7. Aqueous self-assembly of aromatic rod building blocks vol.2008, pp.9, 2006, https://doi.org/10.1039/b713737k
  8. Quantitative Determination of the Chromophore Alignment Induced by Electrode Contact Poling in Self-Assembled NLO Materials vol.30, pp.4, 2006, https://doi.org/10.5012/bkcs.2009.30.4.882
  9. Axial-Bundle Phases − New Modes of 2D, 3D, and Helical Columnar Self-Assembly in Liquid Crystalline Phases of Bolaamphiphiles with Swallow Tail Lateral Chains vol.133, pp.13, 2006, https://doi.org/10.1021/ja110065r
  10. Ordered nanostructures from self-assembly of rod-coil oligomers with n-shaped rod and dendritic poly(ethylene oxide) coil segment vol.26, pp.10, 2006, https://doi.org/10.1080/10610278.2013.863311